An Artificial Neural Network approach to assess road roughness using smartphone-based crowdsourcing data

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
{"title":"An Artificial Neural Network approach to assess road roughness using smartphone-based crowdsourcing data","authors":"","doi":"10.1016/j.engappai.2024.109308","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring road surface conditions is a crucial task for road authorities to develop effective infrastructure maintenance programs. Despite smartphones have been introduced as cost-effective and real-time solution for this purpose, several challenges must be addressed before their real-world application. This study investigates the utilization of smartphone-based crowdsourcing data and Artificial Neural Networks (ANN) to enhance the precision of road surface condition estimation. Initially, data are collected from four different smartphone models mounted in various vehicles, including vertical acceleration, geographic location, and speed. The root mean square of the vertical acceleration data, along with vehicle speed, is then employed as input features for the ANN, while the true International Roughness Index (IRI) values serve as the corresponding output features. Comparative analysis between ANN and regression models based on statistical metrics such as Mean Squared Error (MSE) and Pearson correlation revealed that ANN outperforms regression models. The obtained MSE and Pearson correlation values for ANN (0.56 and 0.91) surpass those of regression models (0.72 and 0.88). Moreover, results indicated that utilizing crowdsourcing smartphone data yielded superior outcomes compared to using a single smartphone for this purpose.</p></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624014660","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring road surface conditions is a crucial task for road authorities to develop effective infrastructure maintenance programs. Despite smartphones have been introduced as cost-effective and real-time solution for this purpose, several challenges must be addressed before their real-world application. This study investigates the utilization of smartphone-based crowdsourcing data and Artificial Neural Networks (ANN) to enhance the precision of road surface condition estimation. Initially, data are collected from four different smartphone models mounted in various vehicles, including vertical acceleration, geographic location, and speed. The root mean square of the vertical acceleration data, along with vehicle speed, is then employed as input features for the ANN, while the true International Roughness Index (IRI) values serve as the corresponding output features. Comparative analysis between ANN and regression models based on statistical metrics such as Mean Squared Error (MSE) and Pearson correlation revealed that ANN outperforms regression models. The obtained MSE and Pearson correlation values for ANN (0.56 and 0.91) surpass those of regression models (0.72 and 0.88). Moreover, results indicated that utilizing crowdsourcing smartphone data yielded superior outcomes compared to using a single smartphone for this purpose.

利用基于智能手机的众包数据评估路面粗糙度的人工神经网络方法
监控路面状况是道路管理部门制定有效基础设施维护计划的一项重要任务。尽管智能手机已作为经济高效的实时解决方案被引入到这一领域,但在其实际应用之前必须解决几个难题。本研究探讨了如何利用基于智能手机的众包数据和人工神经网络(ANN)来提高路面状况评估的精度。首先,从安装在不同车辆上的四种不同智能手机模型中收集数据,包括垂直加速度、地理位置和速度。然后,垂直加速度数据的均方根与车速一起被用作 ANN 的输入特征,而真实的国际粗糙度指数(IRI)值则作为相应的输出特征。根据平均平方误差 (MSE) 和皮尔逊相关性等统计指标对 ANN 和回归模型进行的比较分析表明,ANN 优于回归模型。ANN 的平均平方误差(MSE)和皮尔逊相关性值(0.56 和 0.91)超过了回归模型(0.72 和 0.88)。此外,结果表明,与使用单一智能手机相比,利用众包智能手机数据能产生更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信