Heterogeneous treatment effect bounds under sample selection with an application to the effects of social media on political polarization

IF 9.9 3区 经济学 Q1 ECONOMICS
Phillip Heiler
{"title":"Heterogeneous treatment effect bounds under sample selection with an application to the effects of social media on political polarization","authors":"Phillip Heiler","doi":"10.1016/j.jeconom.2024.105856","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a method for estimation and inference for bounds for heterogeneous causal effect parameters in general sample selection models where the treatment can affect whether an outcome is observed and no exclusion restrictions are available. The method provides conditional effect bounds as functions of policy relevant pre-treatment variables. It allows for conducting valid statistical inference on the unidentified conditional effects. We use a flexible debiased/double machine learning approach that can accommodate non-linear functional forms and high-dimensional confounders. Easily verifiable high-level conditions for estimation, misspecification robust confidence intervals, and uniform confidence bands are provided as well. We re-analyze data from a large scale field experiment on Facebook on counter-attitudinal news subscription with attrition. Our method yields substantially tighter effect bounds compared to conventional methods and suggests depolarization effects for younger users.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"244 1","pages":"Article 105856"},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030440762400201X/pdfft?md5=6a6addc12c3ac7b4b64d5b0fb4fdde73&pid=1-s2.0-S030440762400201X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030440762400201X","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a method for estimation and inference for bounds for heterogeneous causal effect parameters in general sample selection models where the treatment can affect whether an outcome is observed and no exclusion restrictions are available. The method provides conditional effect bounds as functions of policy relevant pre-treatment variables. It allows for conducting valid statistical inference on the unidentified conditional effects. We use a flexible debiased/double machine learning approach that can accommodate non-linear functional forms and high-dimensional confounders. Easily verifiable high-level conditions for estimation, misspecification robust confidence intervals, and uniform confidence bands are provided as well. We re-analyze data from a large scale field experiment on Facebook on counter-attitudinal news subscription with attrition. Our method yields substantially tighter effect bounds compared to conventional methods and suggests depolarization effects for younger users.

样本选择下的异质性处理效应边界,应用于社交媒体对政治极化的影响
我们提出了一种在一般样本选择模型中估计和推断异质性因果效应参数边界的方法,在这种模型中,处理会影响是否观察到结果,而且没有排除限制。该方法提供了作为政策相关前处理变量函数的条件效应边界。它允许对未确定的条件效应进行有效的统计推断。我们采用灵活的去偏/双机器学习方法,可以适应非线性函数形式和高维混杂因素。此外,我们还提供了易于验证的估算高级条件、误设稳健置信区间和统一置信带。我们重新分析了 Facebook 上关于反态度新闻订阅的大规模现场实验数据。与传统方法相比,我们的方法产生了更为严格的效应边界,并表明年轻用户具有去极化效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信