Siyuan Zhan , Wei Zhao , Tao Zhong , Linjie Wang , Jiazhong Guo , Jiaxue Cao , Li Li , Hongping Zhang
{"title":"Role of circPAPD7 in regulating proliferation and differentiation of goat skeletal muscle satellite cells","authors":"Siyuan Zhan , Wei Zhao , Tao Zhong , Linjie Wang , Jiazhong Guo , Jiaxue Cao , Li Li , Hongping Zhang","doi":"10.1016/j.ygeno.2024.110936","DOIUrl":null,"url":null,"abstract":"<div><p>The circular RNA (circRNA) plays a crucial role in various biological processes, particularly posttranscriptional regulation. However, the role of circRNA in the development of goat skeletal muscle has not been thoroughly explored. Here, we identified circPAPD7, which is a novel circular RNA that is preferentially expressed in the skeletal muscle. Functional assays demonstrated that circPAPD7 promoted proliferation and inhibited differentiation in goat skeletal muscle satellite cells (MuSCs). Mechanistically, it was discovered that circPAPD7 interacts with miR-26a-5p. Moreover, the rescue experiments indicated that the overexpression of circPAPD7 may reverse the inhibitory impact of miR-26a-5p on myoblast proliferation and the accelerated effects on differentiation. Furthermore, we provided evidence that circPAPD7 functions as a sponge for miR-26a-5p, thereby facilitating the upregulation of EZH2 expression in goat MuSCs. Together, the results revealed that circPAPD7 promote proliferation and inhibit differentiation of goat MuSCs via the miR-26a-5p/EZH2 pathway.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001575/pdfft?md5=08b5f7ac9b2193423e46b6eb407608db&pid=1-s2.0-S0888754324001575-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324001575","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The circular RNA (circRNA) plays a crucial role in various biological processes, particularly posttranscriptional regulation. However, the role of circRNA in the development of goat skeletal muscle has not been thoroughly explored. Here, we identified circPAPD7, which is a novel circular RNA that is preferentially expressed in the skeletal muscle. Functional assays demonstrated that circPAPD7 promoted proliferation and inhibited differentiation in goat skeletal muscle satellite cells (MuSCs). Mechanistically, it was discovered that circPAPD7 interacts with miR-26a-5p. Moreover, the rescue experiments indicated that the overexpression of circPAPD7 may reverse the inhibitory impact of miR-26a-5p on myoblast proliferation and the accelerated effects on differentiation. Furthermore, we provided evidence that circPAPD7 functions as a sponge for miR-26a-5p, thereby facilitating the upregulation of EZH2 expression in goat MuSCs. Together, the results revealed that circPAPD7 promote proliferation and inhibit differentiation of goat MuSCs via the miR-26a-5p/EZH2 pathway.