{"title":"Relative entropy based uncertainty principles for graph signals","authors":"Xu Guanlei, Xu Xiaogang , Wang Xiaotong","doi":"10.1016/j.sigpro.2024.109708","DOIUrl":null,"url":null,"abstract":"<div><p>In physical quantum mechanics, the uncertainty principle in presence of quantum memory [Berta M, Christandl M, Colbeck R,et al., Nature Physics] can reach much lower bound, which has resulted in a huge breakthrough in quantum mechanics. Inspired by this idea, this paper would propose some novel uncertainty relations in terms of relative entropy for signal representation and time-frequency resolution analysis. On one hand, the relative entropy measures the distinguishability between the known (priori) basis and the client basis, which implies that we have partial “memory” of the client basis so that the uncertainty bounds become sharper in some cases. On the other hand, in some cases, if the reference basis along with nearly the same energy distribution could be given, then the uncertainty bound would tend to zero, as shows that there is no uncertainty any longer. These novel uncertainty relationships with sharper bounds would give us the potential advantages over the classical counterpart. In addition, the detailed comparison with classical Shannon entropy based uncertainty principle has been addressed as well via combined uncertainty relations. Finally, the theoretical analysis and numerical experiments on certain application over graph signals have been demonstrated to show the efficiency of these proposed relations.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109708"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003281","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In physical quantum mechanics, the uncertainty principle in presence of quantum memory [Berta M, Christandl M, Colbeck R,et al., Nature Physics] can reach much lower bound, which has resulted in a huge breakthrough in quantum mechanics. Inspired by this idea, this paper would propose some novel uncertainty relations in terms of relative entropy for signal representation and time-frequency resolution analysis. On one hand, the relative entropy measures the distinguishability between the known (priori) basis and the client basis, which implies that we have partial “memory” of the client basis so that the uncertainty bounds become sharper in some cases. On the other hand, in some cases, if the reference basis along with nearly the same energy distribution could be given, then the uncertainty bound would tend to zero, as shows that there is no uncertainty any longer. These novel uncertainty relationships with sharper bounds would give us the potential advantages over the classical counterpart. In addition, the detailed comparison with classical Shannon entropy based uncertainty principle has been addressed as well via combined uncertainty relations. Finally, the theoretical analysis and numerical experiments on certain application over graph signals have been demonstrated to show the efficiency of these proposed relations.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.