Deterministic 3-server on a circle and the limitation of canonical potentials

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Zhiyi Huang, Hanwen Zhang
{"title":"Deterministic 3-server on a circle and the limitation of canonical potentials","authors":"Zhiyi Huang,&nbsp;Hanwen Zhang","doi":"10.1016/j.tcs.2024.114844","DOIUrl":null,"url":null,"abstract":"<div><p>The deterministic <em>k</em>-server conjecture states that there is a <em>k</em>-competitive deterministic algorithm for the <em>k</em>-server problem for any metric space. We show that the work function algorithm is 3-competitive for the 3-server problem on circle metrics, a case left open by Coester and Koutsoupias (2021). Our analysis follows the existing framework but introduces a new potential function which may be viewed as a relaxation of the counterpart by Coester and Koutsoupias (2021). We further notice that the new potential function and many existing ones can be rewritten in a canonical form. Through a computer-aided verification, however, we find that no such canonical potential function can resolve the deterministic 3-server conjecture for general metric spaces under the current analysis framework.</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1020 ","pages":"Article 114844"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524004614","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The deterministic k-server conjecture states that there is a k-competitive deterministic algorithm for the k-server problem for any metric space. We show that the work function algorithm is 3-competitive for the 3-server problem on circle metrics, a case left open by Coester and Koutsoupias (2021). Our analysis follows the existing framework but introduces a new potential function which may be viewed as a relaxation of the counterpart by Coester and Koutsoupias (2021). We further notice that the new potential function and many existing ones can be rewritten in a canonical form. Through a computer-aided verification, however, we find that no such canonical potential function can resolve the deterministic 3-server conjecture for general metric spaces under the current analysis framework.

圆上的确定性 3 伺服器与典型势的限制
确定性 k 伺服器猜想指出,对于任意度量空间的 k 伺服器问题,都存在一种 k 竞争确定性算法。我们证明,对于圆公设上的 3-server 问题,功函数算法具有 3 种竞争性,这是 Coester 和 Koutsoupias(2021 年)未解决的问题。我们的分析沿用了现有的框架,但引入了一个新的势函数,该势函数可视为 Coester 和 Koutsoupias(2021 年)的对应函数的松弛。我们进一步注意到,新的势函数和许多现有的势函数都可以用规范形式重写。然而,通过计算机辅助验证,我们发现在当前的分析框架下,没有这样的典型势函数可以解决一般度量空间的确定性 3 伺服猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信