{"title":"Collaborative human and computer controls of smart machines – A proposed hybrid control","authors":"Hussein Bilal, Zhuming Bi, Nashwan Younis, Hosni Abu-Mulaweh","doi":"10.1016/j.jii.2024.100684","DOIUrl":null,"url":null,"abstract":"<div><p>Human-Machine Interaction (HMI) and Brain-Computer Interface (BCI) are evolving technologies that show the great potentials to extract and utilize humans’ intents in controlling smart machines. However, existing HMI and BCI technologies are limited in terms of (1) the number of Degrees- of-Freedom (DoF) to be controlled and (2) the ways the performance of BCI-enabled control systems are verified and validated. This study aimed to explore the solutions to addree both of above concerns; we proposed a hybrid control system that is capable of training, detecting, and interpreting humans’ intents, and utilizing humans’ intents in real-time controls of smart machines. More specifically, the system acquired brain signals in the form of Electroencephalography (EEG) by an Emotiv Epoc X and processed these signals to detect and extract humans’ intents in real-time machine controls. To cope with the frequency difference of humans’ thinking and machine motion controls, we developed a hybrid control module to fuse humans’ and machine's intelligence so that low-frequency humans’ intents could be used in real-time machine controls. The system was prototyped and verified experimentally. The system was verified to achieve the accuracy of over 90 % in recognizing humans’ intents and controlling a robot by the operator's intents with a satisfactory responding time and accuracy.</p></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"42 ","pages":"Article 100684"},"PeriodicalIF":10.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001274","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Human-Machine Interaction (HMI) and Brain-Computer Interface (BCI) are evolving technologies that show the great potentials to extract and utilize humans’ intents in controlling smart machines. However, existing HMI and BCI technologies are limited in terms of (1) the number of Degrees- of-Freedom (DoF) to be controlled and (2) the ways the performance of BCI-enabled control systems are verified and validated. This study aimed to explore the solutions to addree both of above concerns; we proposed a hybrid control system that is capable of training, detecting, and interpreting humans’ intents, and utilizing humans’ intents in real-time controls of smart machines. More specifically, the system acquired brain signals in the form of Electroencephalography (EEG) by an Emotiv Epoc X and processed these signals to detect and extract humans’ intents in real-time machine controls. To cope with the frequency difference of humans’ thinking and machine motion controls, we developed a hybrid control module to fuse humans’ and machine's intelligence so that low-frequency humans’ intents could be used in real-time machine controls. The system was prototyped and verified experimentally. The system was verified to achieve the accuracy of over 90 % in recognizing humans’ intents and controlling a robot by the operator's intents with a satisfactory responding time and accuracy.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.