{"title":"A parameter-free and locking-free enriched Galerkin method of arbitrary order for linear elasticity","authors":"","doi":"10.1016/j.cma.2024.117375","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a parameter-free and locking-free enriched Galerkin method of arbitrary order for solving the linear elasticity problem in both two and three space dimensions. Our method uses an approximation space that enriches the vector-valued continuous Galerkin space of order <span><math><mi>k</mi></math></span> with some discontinuous piecewise polynomials. To the best of our knowledge, it extends the locking-free enriched Galerkin space in Yi et al. (2022) to high orders for the first time. Compared to the continuous Galerkin method, the proposed method is locking-free with only <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> additional degree of freedom on each element. The parameter-free property of our method is realized by integrating the enriched Galerkin space into the framework of the modified weak Galerkin method. We rigorously establish the well-posedness of the method and provide optimal error estimates for the compressible case. Extensive numerical examples confirm both the accuracy and the locking-free property of the proposed method.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524006303","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a parameter-free and locking-free enriched Galerkin method of arbitrary order for solving the linear elasticity problem in both two and three space dimensions. Our method uses an approximation space that enriches the vector-valued continuous Galerkin space of order with some discontinuous piecewise polynomials. To the best of our knowledge, it extends the locking-free enriched Galerkin space in Yi et al. (2022) to high orders for the first time. Compared to the continuous Galerkin method, the proposed method is locking-free with only additional degree of freedom on each element. The parameter-free property of our method is realized by integrating the enriched Galerkin space into the framework of the modified weak Galerkin method. We rigorously establish the well-posedness of the method and provide optimal error estimates for the compressible case. Extensive numerical examples confirm both the accuracy and the locking-free property of the proposed method.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.