AOF: An adaptive algorithm for enhancing RPL objective function in smart agricultural IoT networks

Abubakar Wakili, Sara Bakkali
{"title":"AOF: An adaptive algorithm for enhancing RPL objective function in smart agricultural IoT networks","authors":"Abubakar Wakili,&nbsp;Sara Bakkali","doi":"10.1016/j.ijin.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Within the Internet of Things (IoT) ecosystem, the Routing Protocol for Low-Power and Lossy Networks (RPL) serves as a foundational element for network communication. The protocol's effectiveness depends on its Objective Function (OF), which orchestrates route selection based on predefined criteria. However, traditional OFs often struggle to adapt to the dynamic nature of IoT environments. This paper presents the Adaptive Objective Function (AOF), an innovative algorithm designed to dynamically adjust the OF in real-time, responding to fluctuating network conditions and application requirements. AOF comprises: a Network Monitor, an OF Selector, an OF Switcher, and an Event Handler, all working in concert to enhance network performance, reliability, and energy efficiency. Through simulations, AOF has demonstrated superior performance over legacy OFs, achieving a 10 %–20 % reduction in End-to-End Delay (EED), a 1 %–2 % increase in Packet Delivery Ratio (PDR), a 10 %–20 % improvement in Network Lifetime (NLT), and a substantial 50 %–80 % decrease in Control Overhead (COH). The paper also presents a smart agriculture case study that illustrates AOF's practical application in optimizing sensor network data routing—a testament to its versatility and practicality. Future endeavours will concentrate on further refining AOF and broadening its application across various IoT domains.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"5 ","pages":"Pages 325-339"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666603024000320/pdfft?md5=bf0e841f7517d2e4a59787401fa56ed6&pid=1-s2.0-S2666603024000320-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603024000320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Within the Internet of Things (IoT) ecosystem, the Routing Protocol for Low-Power and Lossy Networks (RPL) serves as a foundational element for network communication. The protocol's effectiveness depends on its Objective Function (OF), which orchestrates route selection based on predefined criteria. However, traditional OFs often struggle to adapt to the dynamic nature of IoT environments. This paper presents the Adaptive Objective Function (AOF), an innovative algorithm designed to dynamically adjust the OF in real-time, responding to fluctuating network conditions and application requirements. AOF comprises: a Network Monitor, an OF Selector, an OF Switcher, and an Event Handler, all working in concert to enhance network performance, reliability, and energy efficiency. Through simulations, AOF has demonstrated superior performance over legacy OFs, achieving a 10 %–20 % reduction in End-to-End Delay (EED), a 1 %–2 % increase in Packet Delivery Ratio (PDR), a 10 %–20 % improvement in Network Lifetime (NLT), and a substantial 50 %–80 % decrease in Control Overhead (COH). The paper also presents a smart agriculture case study that illustrates AOF's practical application in optimizing sensor network data routing—a testament to its versatility and practicality. Future endeavours will concentrate on further refining AOF and broadening its application across various IoT domains.

AOF:智能农业物联网网络中增强 RPL 目标函数的自适应算法
在物联网(IoT)生态系统中,低功耗和有损网络路由协议(RPL)是网络通信的基础要素。该协议的有效性取决于其目标函数(OF),该函数根据预定义的标准协调路由选择。然而,传统的目标函数往往难以适应物联网环境的动态特性。本文介绍了自适应目标函数(AOF),这是一种创新算法,旨在实时动态调整目标函数,以应对不断变化的网络条件和应用需求。AOF 包括:网络监控器、OF 选择器、OF 切换器和事件处理程序,它们协同工作以提高网络性能、可靠性和能效。通过仿真,AOF 与传统 OF 相比表现出更优越的性能,端到端延迟 (EED) 降低了 10%-20%,数据包交付率 (PDR) 提高了 1%-2%,网络寿命 (NLT) 提高了 10%-20%,控制开销 (COH) 大幅降低了 50%-80%。论文还介绍了一个智能农业案例研究,说明了 AOF 在优化传感器网络数据路由方面的实际应用,证明了它的多功能性和实用性。未来的工作将集中于进一步完善 AOF,并扩大其在各种物联网领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信