Virtual linearity for KPP reaction-diffusion equations

IF 1.5 1区 数学 Q1 MATHEMATICS
Andrej Zlatoš
{"title":"Virtual linearity for KPP reaction-diffusion equations","authors":"Andrej Zlatoš","doi":"10.1016/j.aim.2024.109948","DOIUrl":null,"url":null,"abstract":"<div><p>We show that long time solution dynamic for general reaction-advection-diffusion equations with KPP reactions is virtually linear in the following sense. Its leading order depends on the non-linear reaction only through its linearization at <span><math><mi>u</mi><mo>=</mo><mn>0</mn></math></span>, and it can also be recovered for general initial data by instead solving the PDE for restrictions of the initial condition to unit cubes on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> (the latter means that non-linear interaction of these restricted solutions has only lower order effects on the overall solution dynamic). The result holds under a uniform bound on the advection coefficient, which we show to be sharp. We also extend it to models with non-local diffusion and KPP reactions.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109948"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004638","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that long time solution dynamic for general reaction-advection-diffusion equations with KPP reactions is virtually linear in the following sense. Its leading order depends on the non-linear reaction only through its linearization at u=0, and it can also be recovered for general initial data by instead solving the PDE for restrictions of the initial condition to unit cubes on Rd (the latter means that non-linear interaction of these restricted solutions has only lower order effects on the overall solution dynamic). The result holds under a uniform bound on the advection coefficient, which we show to be sharp. We also extend it to models with non-local diffusion and KPP reactions.

KPP 反应扩散方程的虚拟线性关系
我们的研究表明,具有 KPP 反应的一般反应-平流-扩散方程的长时间动态解在以下意义上几乎是线性的。其前导阶仅通过 u=0 处的线性化而依赖于非线性反应,而且对于一般初始数据,也可以通过求解初始条件对 Rd 上单位立方体的限制的 PDE 来恢复(后者意味着这些限制解的非线性相互作用对整体解动态仅有低阶影响)。这一结果在平流系数的统一约束下成立,我们证明这一约束是尖锐的。我们还将其扩展到具有非局部扩散和 KPP 反应的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信