Cristina Benea , Frédéric Bernicot , Victor Lie , Marco Vitturi
{"title":"The non-resonant bilinear Hilbert-Carleson operator","authors":"Cristina Benea , Frédéric Bernicot , Victor Lie , Marco Vitturi","doi":"10.1016/j.aim.2024.109939","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we introduce the class of bilinear Hilbert-Carleson operators <span><math><msub><mrow><mo>{</mo><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></msub></math></span> defined by<span><span><span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>λ</mi><mo>∈</mo><mi>R</mi></mrow></munder><mo></mo><mo>|</mo><mo>∫</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>−</mo><mi>t</mi><mo>)</mo><mspace></mspace><mi>g</mi><mo>(</mo><mi>x</mi><mo>+</mo><mi>t</mi><mo>)</mo><mspace></mspace><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>λ</mi><msup><mrow><mi>t</mi></mrow><mrow><mi>a</mi></mrow></msup></mrow></msup><mspace></mspace><mfrac><mrow><mi>d</mi><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>|</mo></math></span></span></span> and show that in the non-resonant case <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>∖</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span> the operator <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> extends continuously from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> into <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> whenever <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac></math></span> with <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo>,</mo><mspace></mspace><mi>q</mi><mo>≤</mo><mo>∞</mo></math></span> and <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo><</mo><mi>r</mi><mo><</mo><mo>∞</mo></math></span>.</p><p>A key novel feature of these operators is that – in the non-resonant case – <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> has a <em>hybrid</em> nature enjoying both</p><ul><li><span>(I)</span><span><p><em>zero curvature</em> features inherited from the modulation invariance property of the classical bilinear Hilbert transform (BHT), and</p></span></li><li><span>(II)</span><span><p><em>non-zero curvature</em> features arising from the Carleson-type operator with nonlinear phase <span><math><mi>λ</mi><msup><mrow><mi>t</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span>.</p></span></li></ul> In order to simultaneously control these two competing facets of our operator we develop a <em>two-resolution approach</em>:<ul><li><span>•</span><span><p>A <em>low resolution, multi-scale analysis</em> addressing (I) and relying on the time-frequency discretization of <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> into suitable versions of “dilated” phase-space BHT-like portraits. The resulting decomposition will produce rank-one families of tri-tiles <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>m</mi></mrow></msub></math></span> such that the components of any such tri-tile will no longer have area one Heisenberg localization. The control over these families will be obtained via a refinement of the time-frequency methods introduced in <span><span>[35]</span></span> and <span><span>[36]</span></span>.</p></span></li><li><span>•</span><span><p>A <em>high resolution, single scale analysis</em> addressing (II) and relying on a further discretization of each of the tri-tiles <span><math><mi>P</mi><mo>∈</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> into a four-parameter family of tri-tiles <span><math><mi>S</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> with each of the resulting tri-tiles <span><math><mi>s</mi><mo>∈</mo><mi>S</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> now obeying the area one Heisenberg localization. The design of these latter families as well as the extraction of the cancellation encoded in the non-zero curvature of the multiplier's phase within each given <em>P</em> relies on the LGC-methodology introduced in <span><span>[41]</span></span>.</p></span></li></ul> A further interesting aspect of our work is that the high resolution analysis itself involves two types of decompositions capturing the local (single scale) behavior of our operator:<ul><li><span>•</span><span><p>A <em>continuous phase-linearized spatial model</em> that serves as the vehicle for extracting the cancellation from the multiplier's phase. The latter is achieved via <span><math><mi>T</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> arguments, number-theoretic tools (Weyl sums) and phase level set analysis exploiting time-frequency correlations.</p></span></li><li><span>•</span><span><p>A <em>discrete phase-linearized wave-packet model</em> that takes the just-captured phase cancellation and feeds it into the low resolution analysis in order to achieve the global control over <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span>.</p></span></li></ul><p>As a consequence of the above, our proof offers a unifying perspective on the distinct methods for treating the zero/non-zero curvature paradigms.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109939"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004547","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we introduce the class of bilinear Hilbert-Carleson operators defined by and show that in the non-resonant case the operator extends continuously from into whenever with and .
A key novel feature of these operators is that – in the non-resonant case – has a hybrid nature enjoying both
(I)
zero curvature features inherited from the modulation invariance property of the classical bilinear Hilbert transform (BHT), and
(II)
non-zero curvature features arising from the Carleson-type operator with nonlinear phase .
In order to simultaneously control these two competing facets of our operator we develop a two-resolution approach:
•
A low resolution, multi-scale analysis addressing (I) and relying on the time-frequency discretization of into suitable versions of “dilated” phase-space BHT-like portraits. The resulting decomposition will produce rank-one families of tri-tiles such that the components of any such tri-tile will no longer have area one Heisenberg localization. The control over these families will be obtained via a refinement of the time-frequency methods introduced in [35] and [36].
•
A high resolution, single scale analysis addressing (II) and relying on a further discretization of each of the tri-tiles into a four-parameter family of tri-tiles with each of the resulting tri-tiles now obeying the area one Heisenberg localization. The design of these latter families as well as the extraction of the cancellation encoded in the non-zero curvature of the multiplier's phase within each given P relies on the LGC-methodology introduced in [41].
A further interesting aspect of our work is that the high resolution analysis itself involves two types of decompositions capturing the local (single scale) behavior of our operator:
•
A continuous phase-linearized spatial model that serves as the vehicle for extracting the cancellation from the multiplier's phase. The latter is achieved via arguments, number-theoretic tools (Weyl sums) and phase level set analysis exploiting time-frequency correlations.
•
A discrete phase-linearized wave-packet model that takes the just-captured phase cancellation and feeds it into the low resolution analysis in order to achieve the global control over .
As a consequence of the above, our proof offers a unifying perspective on the distinct methods for treating the zero/non-zero curvature paradigms.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.