Nitrogen-Doped carbon coated zinc selenide nanoparticles derived from metal−organic framework as high-rate and long-life anode materials for half/full sodium-ion batteries

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Yunxiu Wang, Yilin Wang, Zenghui Cai, Zhijiang Yu, hao Dong, Yifan Zhang, Yanli Zhou, Xintao Zhang, Yanjun Zhai, Fuyi Jiang, Caifu Dong
{"title":"Nitrogen-Doped carbon coated zinc selenide nanoparticles derived from metal−organic framework as high-rate and long-life anode materials for half/full sodium-ion batteries","authors":"Yunxiu Wang, Yilin Wang, Zenghui Cai, Zhijiang Yu, hao Dong, Yifan Zhang, Yanli Zhou, Xintao Zhang, Yanjun Zhai, Fuyi Jiang, Caifu Dong","doi":"10.1039/d4qi01928h","DOIUrl":null,"url":null,"abstract":"To address the slow reaction kinetics and poor cyclic stability of ZnSe during sodium storage. In this study, the two-dimensional network structure [Zn(L3)·H2O]n (ZnL, L=5-aminoisophthalic acid) was firstly successfully prepared by a simple solvothermal reaction. Then, nitrogen-doped carbon coated ZnSe nanoparticle composites (denoted as ZnSe@NC) were obtained by salinization of ZnL. Benefiting from the synergistic effect of ZnSe nanoparticles and NC, ZnSe@NC demonstrated ultra-long cycling stability (a capacity decay rate of only 0.052% per cycle) and high rate performance (400.6/311.1 mAh g−1 at 0.1/10 A g−1). The excellent electrochemical properties of ZnSe@NC can be attributed to high pseudocapacitance contribution, low charge transfer impedance, and high ion diffusion coefficient. In addition, ex-situ XRD, XPS, and HRTEM analysis revealed that the sodium storage process of ZnSe@NC is a conversion reaction followed by an alloying reaction. More importantly, the sodium-ion full battery Na3V2(PO4)3@rGO//ZnSe@NC can maintain a reversible capacity of 216.4 mAh g−1 after 100 cycles at 0.3 A g−1. This approach provides a promising method for the design of MOFs-derived metal selenide materials for energy storage and conversion.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi01928h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

To address the slow reaction kinetics and poor cyclic stability of ZnSe during sodium storage. In this study, the two-dimensional network structure [Zn(L3)·H2O]n (ZnL, L=5-aminoisophthalic acid) was firstly successfully prepared by a simple solvothermal reaction. Then, nitrogen-doped carbon coated ZnSe nanoparticle composites (denoted as ZnSe@NC) were obtained by salinization of ZnL. Benefiting from the synergistic effect of ZnSe nanoparticles and NC, ZnSe@NC demonstrated ultra-long cycling stability (a capacity decay rate of only 0.052% per cycle) and high rate performance (400.6/311.1 mAh g−1 at 0.1/10 A g−1). The excellent electrochemical properties of ZnSe@NC can be attributed to high pseudocapacitance contribution, low charge transfer impedance, and high ion diffusion coefficient. In addition, ex-situ XRD, XPS, and HRTEM analysis revealed that the sodium storage process of ZnSe@NC is a conversion reaction followed by an alloying reaction. More importantly, the sodium-ion full battery Na3V2(PO4)3@rGO//ZnSe@NC can maintain a reversible capacity of 216.4 mAh g−1 after 100 cycles at 0.3 A g−1. This approach provides a promising method for the design of MOFs-derived metal selenide materials for energy storage and conversion.
源自金属有机框架的氮掺杂碳涂层硒化锌纳米粒子作为半/全钠离子电池的高倍率和长寿命负极材料
为了解决硒化锌在钠储存过程中反应动力学慢、循环稳定性差的问题。本研究首先通过简单的溶热反应成功制备了二维网络结构[Zn(L3)-H2O]n(ZnL,L=5-氨基间苯二甲酸)。然后,通过对 ZnL 进行盐析,得到了氮掺杂碳包覆 ZnSe 纳米粒子复合材料(简称 ZnSe@NC)。得益于 ZnSe 纳米粒子和 NC 的协同作用,ZnSe@NC 表现出超长循环稳定性(每个循环的容量衰减率仅为 0.052%)和高倍率性能(在 0.1/10 A g-1 条件下为 400.6/311.1 mAh g-1)。ZnSe@NC 的优异电化学性能可归因于高假电容贡献、低电荷转移阻抗和高离子扩散系数。此外,原位 XRD、XPS 和 HRTEM 分析表明,ZnSe@NC 的钠存储过程是一个转化反应,然后是合金化反应。更重要的是,钠离子全电池 Na3V2(PO4)3@rGO//ZnSe@NC 在 0.3 A g-1 的条件下循环 100 次后,可保持 216.4 mAh g-1 的可逆容量。这种方法为设计用于能量存储和转换的 MOFs 衍生金属硒化物材料提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信