Bulk-boundary correspondence in extended trimer Su-Schrieffer-Heeger model

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Sonu Verma, Tarun Kanti Ghosh
{"title":"Bulk-boundary correspondence in extended trimer Su-Schrieffer-Heeger model","authors":"Sonu Verma, Tarun Kanti Ghosh","doi":"10.1103/physrevb.110.125424","DOIUrl":null,"url":null,"abstract":"We consider an extended trimer Su-Schrieffer-Heeger (SSH) tight-binding Hamiltonian keeping up to next-nearest-neighbor (NNN)-hopping terms and on-site potential energy. The Bloch Hamiltonian can be expressed in terms of all the eight generators (i.e., Gell-Mann matrices) of the SU(3) group. We provide exact analytical expressions of three dispersive energy bands and the corresponding eigenstates for any choices of the system parameters. The system lacks full chiral symmetry since the energy spectrum is not symmetric around zero, except at isolated Bloch wave vectors. We explore parity, time reversal, and certain special chiral symmetries for various system parameters. We discuss the bulk-boundary correspondence by numerically computing the Zak phase for all the bands and the boundary modes in the open boundary condition. There are three different kinds of topological phase transitions, which are classified based on the gap closing points in the Brillouin zone (BZ) while tuning the nearest-neighbor (NN)- and NNN-hopping terms. We find that quantized changes (in units of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math>) in two out of three Zak phases characterize these topological phase transitions. We propose another bulk topological invariant, namely the <i>sublattice winding number</i>, which also characterizes the topological phase transitions changing from <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mi>ν</mi><mi>α</mi></msup><mo>=</mo><mn>0</mn><mo>↔</mo><mn>2</mn></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mi>ν</mi><mi>α</mi></msup><mo>=</mo><mn>0</mn><mo>↔</mo><mn>1</mn><mo>↔</mo><mn>2</mn></mrow></math> (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math>: sublattice index). The sublattice winding number not only provides a relatively simple analytical understanding of topological phases but also successfully establishes bulk-boundary correspondence in the absence of inversion symmetry, which may help in characterizing the bulk-boundary correspondence of systems without chiral and inversion symmetry.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.125424","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an extended trimer Su-Schrieffer-Heeger (SSH) tight-binding Hamiltonian keeping up to next-nearest-neighbor (NNN)-hopping terms and on-site potential energy. The Bloch Hamiltonian can be expressed in terms of all the eight generators (i.e., Gell-Mann matrices) of the SU(3) group. We provide exact analytical expressions of three dispersive energy bands and the corresponding eigenstates for any choices of the system parameters. The system lacks full chiral symmetry since the energy spectrum is not symmetric around zero, except at isolated Bloch wave vectors. We explore parity, time reversal, and certain special chiral symmetries for various system parameters. We discuss the bulk-boundary correspondence by numerically computing the Zak phase for all the bands and the boundary modes in the open boundary condition. There are three different kinds of topological phase transitions, which are classified based on the gap closing points in the Brillouin zone (BZ) while tuning the nearest-neighbor (NN)- and NNN-hopping terms. We find that quantized changes (in units of π) in two out of three Zak phases characterize these topological phase transitions. We propose another bulk topological invariant, namely the sublattice winding number, which also characterizes the topological phase transitions changing from να=02 and να=012 (α: sublattice index). The sublattice winding number not only provides a relatively simple analytical understanding of topological phases but also successfully establishes bulk-boundary correspondence in the absence of inversion symmetry, which may help in characterizing the bulk-boundary correspondence of systems without chiral and inversion symmetry.

Abstract Image

扩展三聚体 Su-Schrieffer-Heeger 模型中的体界对应关系
我们考虑了一个扩展的三元苏-施里弗-希格(SSH)紧束缚哈密顿方程,其中保留了最近邻(NNN)跳跃项和现场势能。布洛赫哈密顿可以用 SU(3) 群的所有八个发电机(即盖尔-曼矩阵)来表示。我们提供了三个色散能带的精确分析表达式,以及任意选择系统参数时的相应特征状态。该系统缺乏完全的手性对称性,因为除了孤立的布洛赫波矢量外,能谱在零附近并不对称。我们探讨了各种系统参数的奇偶性、时间反转和某些特殊手性对称性。我们通过数值计算所有波段的扎克相位和开放边界条件下的边界模式,讨论了体界对应关系。我们根据布里渊区(BZ)中的间隙闭合点,同时调整最近邻(NNN)项和 NNN 跳项,将拓扑相变分为三种不同类型。我们发现,在三个扎克相中,有两个的量子化变化(以 π 为单位)是这些拓扑相变的特征。我们提出了另一个体拓扑不变式,即子晶格绕组数,它也表征了从να=0↔2 到 να=0↔1↔2(α:子晶格索引)的拓扑相变。亚晶格缠绕数不仅为拓扑相提供了相对简单的分析理解,而且成功地建立了无反转对称时的体界对应关系,这可能有助于表征无手性和反转对称体系的体界对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信