Corentin Bon, Benedikt Goretzki, Marie Flamme, Claude Shelton, Holly Davis, Fabio Lima, Francisco Garcia, Scott Brittain, Cara E. Brocklehurst
{"title":"Oxadiazolines as Photoreleasable Labels for Drug Target Identification","authors":"Corentin Bon, Benedikt Goretzki, Marie Flamme, Claude Shelton, Holly Davis, Fabio Lima, Francisco Garcia, Scott Brittain, Cara E. Brocklehurst","doi":"10.1021/jacs.4c06936","DOIUrl":null,"url":null,"abstract":"Photoaffinity labeling is a widely used technique for studying ligand–protein and protein–protein interactions. Traditional photoaffinity labels utilize nonspecific C–H bond insertion reactions mediated by a highly reactive intermediate. Despite being the most widely used photoaffinity labels, diazirines exhibit limited compatibility with downstream organic reactions and suffer from storage stability concerns. This study introduces oxadiazolines as innovative and complementary photoactivatable labels for addition to the toolbox and demonstrates their application in vitro and through <i>in cellulo</i> labeling experiments. Oxadiazolines can be easily synthesized from ketone moieties and cleaved with 302–330 nm light to cleanly liberate a diazo reactive moiety that can covalently modify nucleophilic amino acid residues. Notably, oxadiazolines are compatible with various organic reaction conditions and functional groups, allowing for the exploration of a large chemical space. Several known inhibitors featuring the oxadiazoline functionality were prepared without affecting their binding affinity. Furthermore, we confirmed the ability of oxadiazolines to form covalent bonds with proteins upon UV-irradiation, both in vitro and <i>in cellulo</i>, yielding comparable results to those of the matched diazirine compounds.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c06936","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photoaffinity labeling is a widely used technique for studying ligand–protein and protein–protein interactions. Traditional photoaffinity labels utilize nonspecific C–H bond insertion reactions mediated by a highly reactive intermediate. Despite being the most widely used photoaffinity labels, diazirines exhibit limited compatibility with downstream organic reactions and suffer from storage stability concerns. This study introduces oxadiazolines as innovative and complementary photoactivatable labels for addition to the toolbox and demonstrates their application in vitro and through in cellulo labeling experiments. Oxadiazolines can be easily synthesized from ketone moieties and cleaved with 302–330 nm light to cleanly liberate a diazo reactive moiety that can covalently modify nucleophilic amino acid residues. Notably, oxadiazolines are compatible with various organic reaction conditions and functional groups, allowing for the exploration of a large chemical space. Several known inhibitors featuring the oxadiazoline functionality were prepared without affecting their binding affinity. Furthermore, we confirmed the ability of oxadiazolines to form covalent bonds with proteins upon UV-irradiation, both in vitro and in cellulo, yielding comparable results to those of the matched diazirine compounds.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.