Unbiasing Hamiltonian Monte Carlo Algorithms for a General Hamiltonian Function

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
T. Lelièvre, R. Santet, G. Stoltz
{"title":"Unbiasing Hamiltonian Monte Carlo Algorithms for a General Hamiltonian Function","authors":"T. Lelièvre, R. Santet, G. Stoltz","doi":"10.1007/s10208-024-09677-4","DOIUrl":null,"url":null,"abstract":"<p>Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo method that allows to sample high dimensional probability measures. It relies on the integration of the Hamiltonian dynamics to propose a move which is then accepted or rejected thanks to a Metropolis procedure. Unbiased sampling is guaranteed by the preservation by the numerical integrators of two key properties of the Hamiltonian dynamics: volume-preservation and reversibility up to momentum reversal. For separable Hamiltonian functions, some standard explicit numerical schemes, such as the Störmer–Verlet integrator, satisfy these properties. However, for numerical or physical reasons, one may consider a Hamiltonian function which is nonseparable, in which case the standard numerical schemes which preserve the volume and satisfy reversibility up to momentum reversal are implicit. When implemented in practice, such implicit schemes may admit many solutions or none, especially when the timestep is too large. We show here how to enforce the numerical reversibility, and thus unbiasedness, of HMC schemes in this context by introducing a reversibility check. In addition, for some specific forms of the Hamiltonian function, we discuss the consistency of these HMC schemes with some Langevin dynamics, and show in particular that our algorithm yields an efficient discretization of the metropolized overdamped Langevin dynamics with position-dependent diffusion coefficients. Numerical results illustrate the relevance of the reversibility check on simple problems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09677-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo method that allows to sample high dimensional probability measures. It relies on the integration of the Hamiltonian dynamics to propose a move which is then accepted or rejected thanks to a Metropolis procedure. Unbiased sampling is guaranteed by the preservation by the numerical integrators of two key properties of the Hamiltonian dynamics: volume-preservation and reversibility up to momentum reversal. For separable Hamiltonian functions, some standard explicit numerical schemes, such as the Störmer–Verlet integrator, satisfy these properties. However, for numerical or physical reasons, one may consider a Hamiltonian function which is nonseparable, in which case the standard numerical schemes which preserve the volume and satisfy reversibility up to momentum reversal are implicit. When implemented in practice, such implicit schemes may admit many solutions or none, especially when the timestep is too large. We show here how to enforce the numerical reversibility, and thus unbiasedness, of HMC schemes in this context by introducing a reversibility check. In addition, for some specific forms of the Hamiltonian function, we discuss the consistency of these HMC schemes with some Langevin dynamics, and show in particular that our algorithm yields an efficient discretization of the metropolized overdamped Langevin dynamics with position-dependent diffusion coefficients. Numerical results illustrate the relevance of the reversibility check on simple problems.

Abstract Image

一般哈密顿函数的无偏哈密顿蒙特卡洛算法
汉密尔顿蒙特卡洛(HMC)是一种马尔可夫链蒙特卡洛方法,可以对高维概率度量进行采样。它依靠对哈密尔顿动力学的积分来提出一个棋步,然后通过 Metropolis 程序来接受或拒绝该棋步。无偏采样是由哈密尔顿动力学的两个关键特性:体积保持和动量反转的可逆性所保证的。对于可分离的哈密顿函数,一些标准的显式数值方案(如斯托默-韦勒积分器)可以满足这些特性。然而,出于数值或物理原因,我们可能会考虑不可分离的哈密顿函数,在这种情况下,保持体积和满足动量反转可逆性的标准数值方案是隐式的。在实际应用中,这种隐式方案可能会有很多解,也可能没有解,尤其是当时间步长过大时。在此,我们展示了如何通过引入可逆性检查,在这种情况下执行 HMC 方案的数值可逆性,进而实现无偏性。此外,对于哈密顿函数的某些特定形式,我们讨论了这些 HMC 方案与某些朗格文动力学的一致性,并特别说明我们的算法可以高效离散化具有位置相关扩散系数的大都会过阻尼朗格文动力学。数值结果说明了在简单问题上进行可逆性检验的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信