Shreya Arya, Arnab Auddy, Ranthony A. Clark, Sunhyuk Lim, Facundo Mémoli, Daniel Packer
{"title":"The Gromov–Wasserstein Distance Between Spheres","authors":"Shreya Arya, Arnab Auddy, Ranthony A. Clark, Sunhyuk Lim, Facundo Mémoli, Daniel Packer","doi":"10.1007/s10208-024-09678-3","DOIUrl":null,"url":null,"abstract":"<p>The Gromov–Wasserstein distance—a generalization of the usual Wasserstein distance—permits comparing probability measures defined on possibly different metric spaces. Recently, this notion of distance has found several applications in Data Science and in Machine Learning. With the goal of aiding both the interpretability of dissimilarity measures computed through the Gromov–Wasserstein distance and the assessment of the approximation quality of computational techniques designed to estimate the Gromov–Wasserstein distance, we determine the precise value of a certain variant of the Gromov–Wasserstein distance between unit spheres of different dimensions. Indeed, we consider a two-parameter family <span>\\(\\{d_{{{\\text {GW}}}p,q}\\}_{p,q=1}^{\\infty }\\)</span> of Gromov–Wasserstein distances between metric measure spaces. By exploiting a suitable interaction between specific values of the parameters <i>p</i> and <i>q</i> and the metric of the underlying spaces, we are able to determine the exact value of the distance <span>\\(d_{{{\\text {GW}}}4,2}\\)</span> between all pairs of unit spheres of different dimensions endowed with their Euclidean distance and their uniform measure.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"13 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09678-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The Gromov–Wasserstein distance—a generalization of the usual Wasserstein distance—permits comparing probability measures defined on possibly different metric spaces. Recently, this notion of distance has found several applications in Data Science and in Machine Learning. With the goal of aiding both the interpretability of dissimilarity measures computed through the Gromov–Wasserstein distance and the assessment of the approximation quality of computational techniques designed to estimate the Gromov–Wasserstein distance, we determine the precise value of a certain variant of the Gromov–Wasserstein distance between unit spheres of different dimensions. Indeed, we consider a two-parameter family \(\{d_{{{\text {GW}}}p,q}\}_{p,q=1}^{\infty }\) of Gromov–Wasserstein distances between metric measure spaces. By exploiting a suitable interaction between specific values of the parameters p and q and the metric of the underlying spaces, we are able to determine the exact value of the distance \(d_{{{\text {GW}}}4,2}\) between all pairs of unit spheres of different dimensions endowed with their Euclidean distance and their uniform measure.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.