Reconstruction of a fractional evolution equation with a source

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Amin Boumenir, Khaled M. Furati, Ibrahim O. Sarumi
{"title":"Reconstruction of a fractional evolution equation with a source","authors":"Amin Boumenir, Khaled M. Furati, Ibrahim O. Sarumi","doi":"10.1007/s13540-024-00337-6","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with the inverse problem of reconstructing a fractional evolution equation with a source. To this end we use observations of the solution on the boundary to reconstruct the principal part of the operator and the fractional order of the time derivative, while an overdetermination at a time <i>T</i> is used to recover the source by a non iterative method. Numerical examples explain how to compute the fractional order and the source using finite data.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00337-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We are concerned with the inverse problem of reconstructing a fractional evolution equation with a source. To this end we use observations of the solution on the boundary to reconstruct the principal part of the operator and the fractional order of the time derivative, while an overdetermination at a time T is used to recover the source by a non iterative method. Numerical examples explain how to compute the fractional order and the source using finite data.

Abstract Image

重构带源的分数演化方程
我们关注的是重建有源分式演化方程的逆问题。为此,我们利用对边界解的观测来重构算子的主部和时间导数的分数阶,同时利用时间 T 的超确定性来通过非迭代法恢复源。数值示例解释了如何利用有限数据计算分数阶和源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信