{"title":"Intervertebral Cervical Disc Intensity (IVCDI) Detection and Classification on MRI Scans Using Deep Learning Methods","authors":"M. Fatih Erkoc, Hasan Ulutas, M. Emin Sahin","doi":"10.1002/ima.23174","DOIUrl":null,"url":null,"abstract":"<p>Radiologists manually interpret magnetic resonance imaging (MRI) scans for the detection of intervertebral cervical disc degeneration, which are often obtained in a primary care or emergency hospital context. The ability of computer models to work with pathological findings and aid in the first interpretation of medical imaging tests is widely acknowledged. Deep learning methods, which are commonly employed today in the diagnosis or detection of many diseases, show great promise in this area. For the detection and segmentation of intervertebral cervical disc intensity, we propose a Mask-RCNN-based deep learning algorithm in this study. The provided approach begins by creating an original dataset using MRI scans that were collected from Yozgat Bozok University. The senior radiologist labels the data, and three classes of intensity are chosen for the classification (low, intermediate, and high). Two alternative network backbones are used in the study, and as a consequence of the training for the Mask R-CNN algorithm, 98.14% and 96.72% mean average precision (mAP) values are obtained with the ResNet50 and ResNet101 architectures, respectively. Utilizing the five-fold cross-validation approach, the study is conducted. This study also applied the Faster R-CNN method, achieving a mAP value of 85.2%. According to the author's knowledge, no study has yet been conducted to apply deep learning algorithms to detect intervertebral cervical disc intensity in a patient population with cervical intervertebral disc degeneration. By ensuring accurate MRI image interpretation and effectively supplying supplementary diagnostic information to provide accuracy and consistency in radiological diagnosis, the proposed method is proving to be a highly useful tool for radiologists.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ima.23174","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23174","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Radiologists manually interpret magnetic resonance imaging (MRI) scans for the detection of intervertebral cervical disc degeneration, which are often obtained in a primary care or emergency hospital context. The ability of computer models to work with pathological findings and aid in the first interpretation of medical imaging tests is widely acknowledged. Deep learning methods, which are commonly employed today in the diagnosis or detection of many diseases, show great promise in this area. For the detection and segmentation of intervertebral cervical disc intensity, we propose a Mask-RCNN-based deep learning algorithm in this study. The provided approach begins by creating an original dataset using MRI scans that were collected from Yozgat Bozok University. The senior radiologist labels the data, and three classes of intensity are chosen for the classification (low, intermediate, and high). Two alternative network backbones are used in the study, and as a consequence of the training for the Mask R-CNN algorithm, 98.14% and 96.72% mean average precision (mAP) values are obtained with the ResNet50 and ResNet101 architectures, respectively. Utilizing the five-fold cross-validation approach, the study is conducted. This study also applied the Faster R-CNN method, achieving a mAP value of 85.2%. According to the author's knowledge, no study has yet been conducted to apply deep learning algorithms to detect intervertebral cervical disc intensity in a patient population with cervical intervertebral disc degeneration. By ensuring accurate MRI image interpretation and effectively supplying supplementary diagnostic information to provide accuracy and consistency in radiological diagnosis, the proposed method is proving to be a highly useful tool for radiologists.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.