Step-Growth Polymerized Systems of type “A3 + A1”: A Method to Calculate the Bivariate (Molecular size) × (Square Radius of Gyration) Number Distribution

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE
L.Tom Hillegers, Johan J. M. Slot
{"title":"Step-Growth Polymerized Systems of type “A3 + A1”: A Method to Calculate the Bivariate (Molecular size) × (Square Radius of Gyration) Number Distribution","authors":"L.Tom Hillegers,&nbsp;Johan J. M. Slot","doi":"10.1002/mats.202400016","DOIUrl":null,"url":null,"abstract":"<p>Step-growth polymerized systems of type “A3 + A1” are considered. The monomers bear, respectively, 3 or 1 reactive A group. During the reaction, an A group on one monomeric unit might react with an A group on another such unit, thus chemically coupling the two units involved. Complexly structured polymeric molecules are formed. The A3's act as branching points; the A1's as end cappers. At the end of the reaction, the population of molecules present in the reactor vessel varies in size and branching structure. A method is presented to calculate the bivariate (molecular size) × (square radius of gyration) number distribution. It is shown that within the class of molecules of the same size, their square radius of gyration follows a shifted gamma distribution. Two new molecular parameters are introduced: the D index and the G index. The method uses bivariate generating functions.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202400016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202400016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Step-growth polymerized systems of type “A3 + A1” are considered. The monomers bear, respectively, 3 or 1 reactive A group. During the reaction, an A group on one monomeric unit might react with an A group on another such unit, thus chemically coupling the two units involved. Complexly structured polymeric molecules are formed. The A3's act as branching points; the A1's as end cappers. At the end of the reaction, the population of molecules present in the reactor vessel varies in size and branching structure. A method is presented to calculate the bivariate (molecular size) × (square radius of gyration) number distribution. It is shown that within the class of molecules of the same size, their square radius of gyration follows a shifted gamma distribution. Two new molecular parameters are introduced: the D index and the G index. The method uses bivariate generating functions.

Abstract Image

A3 + A1 "型阶跃生长聚合体系:计算双变量(分子大小)×(平方回旋半径)数量分布的方法
我们考虑的是 "A3 + A1 "型阶跃生长聚合体系。这些单体分别带有 3 个或 1 个活性 A 基团。在反应过程中,一个单体单元上的 A 基团可能会与另一个单体单元上的 A 基团发生反应,从而使两个单元发生化学耦合。这样就形成了结构复杂的聚合物分子。A3 起支化作用,A1 起末端封端作用。反应结束时,反应容器中的分子大小和分支结构各不相同。本文提出了一种计算二元(分子大小)×(平方回转半径)数量分布的方法。结果表明,在大小相同的一类分子中,它们的平方回旋半径遵循移动伽马分布。引入了两个新的分子参数:D 指数和 G 指数。该方法使用双变量生成函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信