{"title":"Toward an Explainable Large Language Model for the Automatic Identification of the Drug-Induced Liver Injury Literature","authors":"Chunwei Ma*, and , Russell D. Wolfinger, ","doi":"10.1021/acs.chemrestox.4c0013410.1021/acs.chemrestox.4c00134","DOIUrl":null,"url":null,"abstract":"<p >Drug-induced liver injury (DILI) stands as a significant concern in drug safety, representing the primary cause of acute liver failure. Identifying the scientific literature related to DILI is crucial for monitoring, investigating, and conducting meta-analyses of drug safety issues. Given the intricate and often obscure nature of drug interactions, simple keyword searching can be insufficient for the exhaustive retrieval of the DILI-relevant literature. Manual curation of DILI-related publications demands pharmaceutical expertise and is susceptible to errors, severely limiting throughput. Despite numerous efforts utilizing cutting-edge natural language processing and deep learning techniques to automatically identify the DILI-related literature, their performance remains suboptimal for real-world applications in clinical research and regulatory contexts. In the past year, large language models (LLMs) such as ChatGPT and its open-source counterpart LLaMA have achieved groundbreaking progress in natural language understanding and question answering, paving the way for the automated, high-throughput identification of the DILI-related literature and subsequent analysis. Leveraging a large-scale public dataset comprising 14 203 training publications from the CAMDA 2022 literature AI challenge, we have developed what we believe to be the first LLM specialized in DILI analysis based on LLaMA-2. In comparison with other smaller language models such as BERT, GPT, and their variants, LLaMA-2 exhibits an enhanced out-of-fold accuracy of 97.19% and area under the ROC curve of 0.9947 using 3-fold cross-validation on the training set. Despite LLMs’ initial design for dialogue systems, our study illustrates their successful adaptation into accurate classifiers for automated identification of the DILI-related literature from vast collections of documents. This work is a step toward unleashing the potential of LLMs in the context of regulatory science and facilitating the regulatory review process.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"37 9","pages":"1524–1534 1524–1534"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.4c00134","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Drug-induced liver injury (DILI) stands as a significant concern in drug safety, representing the primary cause of acute liver failure. Identifying the scientific literature related to DILI is crucial for monitoring, investigating, and conducting meta-analyses of drug safety issues. Given the intricate and often obscure nature of drug interactions, simple keyword searching can be insufficient for the exhaustive retrieval of the DILI-relevant literature. Manual curation of DILI-related publications demands pharmaceutical expertise and is susceptible to errors, severely limiting throughput. Despite numerous efforts utilizing cutting-edge natural language processing and deep learning techniques to automatically identify the DILI-related literature, their performance remains suboptimal for real-world applications in clinical research and regulatory contexts. In the past year, large language models (LLMs) such as ChatGPT and its open-source counterpart LLaMA have achieved groundbreaking progress in natural language understanding and question answering, paving the way for the automated, high-throughput identification of the DILI-related literature and subsequent analysis. Leveraging a large-scale public dataset comprising 14 203 training publications from the CAMDA 2022 literature AI challenge, we have developed what we believe to be the first LLM specialized in DILI analysis based on LLaMA-2. In comparison with other smaller language models such as BERT, GPT, and their variants, LLaMA-2 exhibits an enhanced out-of-fold accuracy of 97.19% and area under the ROC curve of 0.9947 using 3-fold cross-validation on the training set. Despite LLMs’ initial design for dialogue systems, our study illustrates their successful adaptation into accurate classifiers for automated identification of the DILI-related literature from vast collections of documents. This work is a step toward unleashing the potential of LLMs in the context of regulatory science and facilitating the regulatory review process.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.