Luce Perié , Cynthia Houël , Anne Zambon , Christelle Guere , Katell Vié , Johanne Leroy-Dudal , Charlotte Vendrely , Rémy Agniel , Franck Carreiras , Cédric R. Picot
{"title":"Impaired incorporation of fibronectin into the extracellular matrix during aging exacerbates the senescent state of dermal cells","authors":"Luce Perié , Cynthia Houël , Anne Zambon , Christelle Guere , Katell Vié , Johanne Leroy-Dudal , Charlotte Vendrely , Rémy Agniel , Franck Carreiras , Cédric R. Picot","doi":"10.1016/j.yexcr.2024.114251","DOIUrl":null,"url":null,"abstract":"<div><p>Fibronectin (Fn) is a ubiquitous extracellular matrix (ECM) glycoprotein that acts as an ECM scaffold organizer and is essential in many biological functions, including tissue repair, differentiation or cancer dissemination. Evidence suggests that the amount of Fn changes during aging. However, how these changes influence the aging process remains unclear. This study aims to understand Fn influence on cell aging. First, we assess the relative level of Fn abundance in both different biopsies of skin donors and replicative senescence cellular model. In skin biopsies, we observed that Fn level decreases with aging in the reticular dermis, while its expression remains relatively stable in the papillary dermis, likely to sustain the dermis-epidermis junction. During replicative senescence, in BJ skin fibroblasts, while intracellular Fn increases, we found that secretion and Fn fibrils formation are less effective. Reduced Fn fibrils leads to disorganization of the ECM. This could be explained by the expression of different Fn isoforms observed in the secretome of senescent cells. Surprisingly, the knockdown of Fn delays the onset of senescence while cultivating cells onto a Fn-coated support promotes it. Taken together, these new insights on the role of Fn during aging may emerge new therapeutic strategies on aged-related diseases.</p></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"442 2","pages":"Article 114251"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724003422","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fibronectin (Fn) is a ubiquitous extracellular matrix (ECM) glycoprotein that acts as an ECM scaffold organizer and is essential in many biological functions, including tissue repair, differentiation or cancer dissemination. Evidence suggests that the amount of Fn changes during aging. However, how these changes influence the aging process remains unclear. This study aims to understand Fn influence on cell aging. First, we assess the relative level of Fn abundance in both different biopsies of skin donors and replicative senescence cellular model. In skin biopsies, we observed that Fn level decreases with aging in the reticular dermis, while its expression remains relatively stable in the papillary dermis, likely to sustain the dermis-epidermis junction. During replicative senescence, in BJ skin fibroblasts, while intracellular Fn increases, we found that secretion and Fn fibrils formation are less effective. Reduced Fn fibrils leads to disorganization of the ECM. This could be explained by the expression of different Fn isoforms observed in the secretome of senescent cells. Surprisingly, the knockdown of Fn delays the onset of senescence while cultivating cells onto a Fn-coated support promotes it. Taken together, these new insights on the role of Fn during aging may emerge new therapeutic strategies on aged-related diseases.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.