Efficient-Residual Net—A Hybrid Neural Network for Automated Brain Tumor Detection

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jainy Sachdeva, Deepanshu Sharma, Chirag Kamal Ahuja, Arnavdeep Singh
{"title":"Efficient-Residual Net—A Hybrid Neural Network for Automated Brain Tumor Detection","authors":"Jainy Sachdeva,&nbsp;Deepanshu Sharma,&nbsp;Chirag Kamal Ahuja,&nbsp;Arnavdeep Singh","doi":"10.1002/ima.23170","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A multiscale feature fusion of Efficient-Residual Net is proposed for classifying tumors on brain Magnetic resonance images with solid or cystic masses, inadequate borders, unpredictable cystic and necrotic regions, and variable heterogeneity. Therefore, in this research, Efficient-Residual Net is proposed by efficaciously amalgamating features of two Deep Convolution Neural Networks—ResNet50 and EffficientNetB0. The skip connections in ResNet50 have reduced the chances of vanishing gradient and overfitting problems considerably thus learning of a higher number of features from input MR images. In addition, EffficientNetB0 uses a compound scaling coefficient for uniformly scaling the dimensions of the network such as depth, width, and resolution. The hybrid model has improved classification results on brain tumors with similar morphology and is tested on three internet repository datasets, namely, Kaggle, BraTS 2018, BraTS 2021, and real-time dataset from Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh. It is observed that the proposed system delivers an overall accuracy of 96.40%, 97.59%, 97.75%, and 97.99% on the four datasets, respectively. The proposed hybrid methodology has given assuring results of 98%–99% of other statistical such parameters as precision, negatively predicted values, and F1 score. The cloud-based web page is also created using the Django framework in Python programming language for accurate prediction and classification of different types of brain tumors.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23170","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A multiscale feature fusion of Efficient-Residual Net is proposed for classifying tumors on brain Magnetic resonance images with solid or cystic masses, inadequate borders, unpredictable cystic and necrotic regions, and variable heterogeneity. Therefore, in this research, Efficient-Residual Net is proposed by efficaciously amalgamating features of two Deep Convolution Neural Networks—ResNet50 and EffficientNetB0. The skip connections in ResNet50 have reduced the chances of vanishing gradient and overfitting problems considerably thus learning of a higher number of features from input MR images. In addition, EffficientNetB0 uses a compound scaling coefficient for uniformly scaling the dimensions of the network such as depth, width, and resolution. The hybrid model has improved classification results on brain tumors with similar morphology and is tested on three internet repository datasets, namely, Kaggle, BraTS 2018, BraTS 2021, and real-time dataset from Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh. It is observed that the proposed system delivers an overall accuracy of 96.40%, 97.59%, 97.75%, and 97.99% on the four datasets, respectively. The proposed hybrid methodology has given assuring results of 98%–99% of other statistical such parameters as precision, negatively predicted values, and F1 score. The cloud-based web page is also created using the Django framework in Python programming language for accurate prediction and classification of different types of brain tumors.

用于自动脑肿瘤检测的高效-残余网络--混合神经网络
针对脑磁共振图像上的肿瘤,如实性或囊性肿块、边界不清、不可预测的囊性和坏死区域以及不同的异质性,提出了Efficient-Residual Net的多尺度特征融合。因此,在这项研究中,通过有效地合并两个深度卷积神经网络--ResNet50 和 EffficientNetB0 的特征,提出了 Efficient-Residual Net。ResNet50 中的跳转连接大大降低了梯度消失和过拟合问题的发生几率,因此能从输入的 MR 图像中学习到更多的特征。此外,EffficientNetB0 还使用了复合缩放系数来统一缩放网络的深度、宽度和分辨率等维度。混合模型改善了对形态相似的脑肿瘤的分类结果,并在三个互联网存储数据集(即 Kaggle、BraTS 2018、BraTS 2021 和来自昌迪加尔医学教育与研究研究生院(PGIMER)的实时数据集)上进行了测试。据观察,拟议系统在四个数据集上的总体准确率分别为 96.40%、97.59%、97.75% 和 97.99%。所提出的混合方法在精确度、负预测值和 F1 分数等其他统计参数上也取得了 98%-99% 的可靠结果。此外,还使用 Python 编程语言中的 Django 框架创建了基于云的网页,用于准确预测和分类不同类型的脑肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信