Tallha Akram, Anas Alsuhaibani, Muhammad Attique Khan, Sajid Ullah Khan, Syed Rameez Naqvi, Mohsin Bilal
{"title":"Dermo-Optimizer: Skin Lesion Classification Using Information-Theoretic Deep Feature Fusion and Entropy-Controlled Binary Bat Optimization","authors":"Tallha Akram, Anas Alsuhaibani, Muhammad Attique Khan, Sajid Ullah Khan, Syed Rameez Naqvi, Mohsin Bilal","doi":"10.1002/ima.23172","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Increases in the prevalence of melanoma, the most lethal form of skin cancer, have been observed over the last few decades. However, the likelihood of a longer life span for individuals is considerably improved with early detection of this malignant illness. Even though the field of computer vision has attained a certain level of success, there is still a degree of ambiguity that represents an unresolved research challenge. In the initial phase of this study, the primary objective is to improve the information derived from input features by combining multiple deep models with the proposed Information-theoretic feature fusion method. Subsequently, in the second phase, the study aims to decrease the redundant and noisy information through down-sampling using the proposed entropy-controlled binary bat selection algorithm. The proposed methodology effectively maintains the integrity of the original feature space, resulting in the creation of highly distinctive feature information. In order to obtain the desired set of features, three contemporary deep models are employed via transfer learning: Inception-Resnet V2, DenseNet-201, and Nasnet Mobile. By combining feature fusion and selection techniques, we may effectively fuse a significant amount of information into the feature vector and subsequently remove any redundant feature information. The effectiveness of the proposed methodology is supported by an evaluation conducted on three well-known dermoscopic datasets, specifically <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>PH</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{PH}}^2 $$</annotation>\n </semantics></math>, ISIC-2016, and ISIC-2017. In order to validate the proposed approach, several performance indicators are taken into account, such as accuracy, sensitivity, specificity, false negative rate (FNR), false positive rate (FPR), and F1-score. The accuracies obtained for all datasets utilizing the proposed methodology are 99.05%, 96.26%, and 95.71%, respectively.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23172","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Increases in the prevalence of melanoma, the most lethal form of skin cancer, have been observed over the last few decades. However, the likelihood of a longer life span for individuals is considerably improved with early detection of this malignant illness. Even though the field of computer vision has attained a certain level of success, there is still a degree of ambiguity that represents an unresolved research challenge. In the initial phase of this study, the primary objective is to improve the information derived from input features by combining multiple deep models with the proposed Information-theoretic feature fusion method. Subsequently, in the second phase, the study aims to decrease the redundant and noisy information through down-sampling using the proposed entropy-controlled binary bat selection algorithm. The proposed methodology effectively maintains the integrity of the original feature space, resulting in the creation of highly distinctive feature information. In order to obtain the desired set of features, three contemporary deep models are employed via transfer learning: Inception-Resnet V2, DenseNet-201, and Nasnet Mobile. By combining feature fusion and selection techniques, we may effectively fuse a significant amount of information into the feature vector and subsequently remove any redundant feature information. The effectiveness of the proposed methodology is supported by an evaluation conducted on three well-known dermoscopic datasets, specifically , ISIC-2016, and ISIC-2017. In order to validate the proposed approach, several performance indicators are taken into account, such as accuracy, sensitivity, specificity, false negative rate (FNR), false positive rate (FPR), and F1-score. The accuracies obtained for all datasets utilizing the proposed methodology are 99.05%, 96.26%, and 95.71%, respectively.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.