Data signals for deep learning applications in Terahertz communications

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Duschia Bodet , Jacob Hall , Ahmad Masihi , Ngwe Thawdar , Tommaso Melodia , Francesco Restuccia , Josep M. Jornet
{"title":"Data signals for deep learning applications in Terahertz communications","authors":"Duschia Bodet ,&nbsp;Jacob Hall ,&nbsp;Ahmad Masihi ,&nbsp;Ngwe Thawdar ,&nbsp;Tommaso Melodia ,&nbsp;Francesco Restuccia ,&nbsp;Josep M. Jornet","doi":"10.1016/j.comnet.2024.110800","DOIUrl":null,"url":null,"abstract":"<div><p>The Terahertz (THz) band (0.1–10 THz) is projected to enable broadband wireless communications of the future, and many envision deep learning as a solution to improve the performance of THz communication systems and networks. However, there are few available datasets of true THz signals that could enable testing and training of deep learning algorithms for the research community. In this paper, we provide an extensive dataset of 120,000 data frames for the research community. All signals were transmitted at 165 GHz but with varying bandwidths (5 GHz, 10 GHz, and 20 GHz), modulations (4PSK, 8PSK, 16QAM, and 64QAM), and transmit amplitudes (75 mV and 600 mV), resulting in twenty-four distinct bandwidth-modulation-power combinations each with 5,000 unique captures. The signals were captured after down conversion at an intermediate frequency of 10 GHz. This dataset enables the research community to experimentally explore solutions relating to ultrabroadband deep and machine learning applications.</p></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"254 ","pages":"Article 110800"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1389128624006327/pdfft?md5=c4870e9a435477344bfb00ccf315d922&pid=1-s2.0-S1389128624006327-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624006327","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The Terahertz (THz) band (0.1–10 THz) is projected to enable broadband wireless communications of the future, and many envision deep learning as a solution to improve the performance of THz communication systems and networks. However, there are few available datasets of true THz signals that could enable testing and training of deep learning algorithms for the research community. In this paper, we provide an extensive dataset of 120,000 data frames for the research community. All signals were transmitted at 165 GHz but with varying bandwidths (5 GHz, 10 GHz, and 20 GHz), modulations (4PSK, 8PSK, 16QAM, and 64QAM), and transmit amplitudes (75 mV and 600 mV), resulting in twenty-four distinct bandwidth-modulation-power combinations each with 5,000 unique captures. The signals were captured after down conversion at an intermediate frequency of 10 GHz. This dataset enables the research community to experimentally explore solutions relating to ultrabroadband deep and machine learning applications.

太赫兹通信中深度学习应用的数据信号
太赫兹(THz)波段(0.1-10 THz)预计将在未来实现宽带无线通信,许多人将深度学习视为提高太赫兹通信系统和网络性能的解决方案。然而,能为研究界测试和训练深度学习算法的真实太赫兹信号数据集却很少。在本文中,我们为研究界提供了一个包含 120,000 个数据帧的广泛数据集。所有信号都在 165 GHz 频率下传输,但带宽(5 GHz、10 GHz 和 20 GHz)、调制(4PSK、8PSK、16QAM 和 64QAM)和传输振幅(75 mV 和 600 mV)各不相同,从而产生了二十四种不同的带宽-调制-功率组合,每种组合都有 5,000 个独特的捕获信号。信号是在 10 GHz 的中间频率进行下变频后捕获的。该数据集使研究界能够通过实验探索与超宽带深度学习和机器学习应用相关的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信