Soliton solutions of derivative nonlinear Schrödinger equations: Conservative schemes and numerical simulation

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Lianpeng Xue, Qifeng Zhang
{"title":"Soliton solutions of derivative nonlinear Schrödinger equations: Conservative schemes and numerical simulation","authors":"Lianpeng Xue,&nbsp;Qifeng Zhang","doi":"10.1016/j.physd.2024.134372","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we numerically study soliton solutions of derivative nonlinear Schrödinger equations based on several conservative finite difference methods. All schemes own second-order accuracy with the convergence order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> in the discrete <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-norm, where <span><math><mi>h</mi></math></span> denotes the spatial step size and <span><math><mi>τ</mi></math></span> denotes the temporal step size. We show that difference schemes preserve some discrete counterparts of continuous conservation laws, and all these schemes are solvable. Extensive numerical examples with soliton solutions are carried out to verify the theoretical results. These results manifest that our schemes have potential application to soliton propagation in optical fibers.</p></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"470 ","pages":"Article 134372"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003221","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we numerically study soliton solutions of derivative nonlinear Schrödinger equations based on several conservative finite difference methods. All schemes own second-order accuracy with the convergence order O(τ2+h2) in the discrete L-norm, where h denotes the spatial step size and τ denotes the temporal step size. We show that difference schemes preserve some discrete counterparts of continuous conservation laws, and all these schemes are solvable. Extensive numerical examples with soliton solutions are carried out to verify the theoretical results. These results manifest that our schemes have potential application to soliton propagation in optical fibers.

导数非线性薛定谔方程的孤子解:保守方案和数值模拟
本文基于几种保守有限差分方法,对导数非线性薛定谔方程的孤子解进行了数值研究。所有方案都具有二阶精度,在离散 L∞ 规范下收敛阶数为 O(τ2+h2),其中 h 表示空间步长,τ 表示时间步长。我们证明,差分方案保留了连续守恒定律的某些离散对应定律,而且所有这些方案都是可解的。为了验证理论结果,我们用孤子解进行了广泛的数值示例。这些结果表明,我们的方案有可能应用于孤子在光纤中的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信