Lulu He , Amelie Jeanneau , Simon Ramsey , Douglas Arthur Gordan Radford , Aaron C. Zecchin , Karin Reinke , Simon D. Jones , Hedwig van Delden , Tim McNaught , Seth Westra , Holger R. Maier
{"title":"Estimating fuel load for wildfire risk assessment at regional scales using earth observation data: A case study in Southwestern Australia","authors":"Lulu He , Amelie Jeanneau , Simon Ramsey , Douglas Arthur Gordan Radford , Aaron C. Zecchin , Karin Reinke , Simon D. Jones , Hedwig van Delden , Tim McNaught , Seth Westra , Holger R. Maier","doi":"10.1016/j.rsase.2024.101356","DOIUrl":null,"url":null,"abstract":"<div><p>The risk of wildfires is increasing globally and models are critical to reducing this risk. Such models require information on fuel load, a crucial factor of fire behaviour, which is generally determined using a combination of fuel age and fuel accumulation models. Traditionally, estimating fuel load relies on manually compiled fire history data (MCFH). In this paper, we introduce an approach to estimate fuel load using readily available earth observation (EO) data, MODIS MCD64A1. The approach is applied to a wildfire-prone region in Southwestern Australia from 2001 to 2021. Results suggest that MODIS produces more accurate and reliable estimates of fuel load compared with MCFH. It is effective in maintaining spatially and temporally complete records of fires, as it reports 11,019 more hectares of burned areas associated with wildfires over the study period. MODIS performs better in capturing wildfires than prescribed burns, as the spatial overlapping ratio is higher for wildfires (0.63) than prescribed burns (0.42). The high agreement between the two datasets for fuel load estimation (weighted kappa of 0.91) results from grassland covering the majority of the landscape. However, the agreement is reduced for other vegetation types — 0.24 for pine, 0.36 for mallee heath, 0.39 for shrubland, and 0.58 for forest. MODIS has lower effectiveness in detecting small and under-canopy fires such as prescribed burns, suggesting the value in combining EO and manually compiled data to obtain improved estimates of fuel load. Due to the scope of objectives, the integration of EO and MCFH has not been fully explored in this study, which will be included in our future research. This study highlights the potential of earth observation data in assessing wildfire risk as the data are easily accessible and reliable, as well as efficient and cost-effective, and they provide the opportunity to develop mitigation strategies at regional scales.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101356"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352938524002209/pdfft?md5=4abb2fe0980ee7d3b0eb7ec4183259ab&pid=1-s2.0-S2352938524002209-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The risk of wildfires is increasing globally and models are critical to reducing this risk. Such models require information on fuel load, a crucial factor of fire behaviour, which is generally determined using a combination of fuel age and fuel accumulation models. Traditionally, estimating fuel load relies on manually compiled fire history data (MCFH). In this paper, we introduce an approach to estimate fuel load using readily available earth observation (EO) data, MODIS MCD64A1. The approach is applied to a wildfire-prone region in Southwestern Australia from 2001 to 2021. Results suggest that MODIS produces more accurate and reliable estimates of fuel load compared with MCFH. It is effective in maintaining spatially and temporally complete records of fires, as it reports 11,019 more hectares of burned areas associated with wildfires over the study period. MODIS performs better in capturing wildfires than prescribed burns, as the spatial overlapping ratio is higher for wildfires (0.63) than prescribed burns (0.42). The high agreement between the two datasets for fuel load estimation (weighted kappa of 0.91) results from grassland covering the majority of the landscape. However, the agreement is reduced for other vegetation types — 0.24 for pine, 0.36 for mallee heath, 0.39 for shrubland, and 0.58 for forest. MODIS has lower effectiveness in detecting small and under-canopy fires such as prescribed burns, suggesting the value in combining EO and manually compiled data to obtain improved estimates of fuel load. Due to the scope of objectives, the integration of EO and MCFH has not been fully explored in this study, which will be included in our future research. This study highlights the potential of earth observation data in assessing wildfire risk as the data are easily accessible and reliable, as well as efficient and cost-effective, and they provide the opportunity to develop mitigation strategies at regional scales.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems