Parham Hadikhani , Daphne Teck Ching Lai , Wee-Hong Ong , Mohammad H. Nadimi-Shahraki
{"title":"Automatic deep spare clustering with a dynamic population-based evolutionary algorithm using reinforcement learning and transfer learning","authors":"Parham Hadikhani , Daphne Teck Ching Lai , Wee-Hong Ong , Mohammad H. Nadimi-Shahraki","doi":"10.1016/j.imavis.2024.105258","DOIUrl":null,"url":null,"abstract":"<div><p>Clustering data effectively remains a significant challenge in machine learning, particularly when the optimal number of clusters is unknown. Traditional deep clustering methods often struggle with balancing local and global search, leading to premature convergence and inefficiency. To address these issues, we introduce ADSC-DPE-RT (Automatic Deep Sparse Clustering with a Dynamic Population-based Evolutionary Algorithm using Reinforcement Learning and Transfer Learning), a novel deep clustering approach. ADSC-DPE-RT builds on Multi-Trial Vector-based Differential Evolution (MTDE), an algorithm that integrates sparse auto-encoding and manifold learning to enable automatic clustering without prior knowledge of cluster count. However, MTDE's fixed population size can lead to either prolonged computation or premature convergence. Our approach introduces a dynamic population generation technique guided by Reinforcement Learning (RL) and Markov Decision Process (MDP) principles. This allows for flexible adjustment of population size, preventing premature convergence and reducing computation time. Additionally, we incorporate Generative Adversarial Networks (GANs) to facilitate dynamic knowledge transfer between MTDE strategies, enhancing diversity and accelerating convergence towards the global optimum. This is the first work to address the dynamic population issue in deep clustering through RL, combined with Transfer Learning to optimize evolutionary algorithms. Our results demonstrate significant improvements in clustering performance, positioning ADSC-DPE-RT as a competitive alternative to state-of-the-art deep clustering methods.</p></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"151 ","pages":"Article 105258"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624003639","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Clustering data effectively remains a significant challenge in machine learning, particularly when the optimal number of clusters is unknown. Traditional deep clustering methods often struggle with balancing local and global search, leading to premature convergence and inefficiency. To address these issues, we introduce ADSC-DPE-RT (Automatic Deep Sparse Clustering with a Dynamic Population-based Evolutionary Algorithm using Reinforcement Learning and Transfer Learning), a novel deep clustering approach. ADSC-DPE-RT builds on Multi-Trial Vector-based Differential Evolution (MTDE), an algorithm that integrates sparse auto-encoding and manifold learning to enable automatic clustering without prior knowledge of cluster count. However, MTDE's fixed population size can lead to either prolonged computation or premature convergence. Our approach introduces a dynamic population generation technique guided by Reinforcement Learning (RL) and Markov Decision Process (MDP) principles. This allows for flexible adjustment of population size, preventing premature convergence and reducing computation time. Additionally, we incorporate Generative Adversarial Networks (GANs) to facilitate dynamic knowledge transfer between MTDE strategies, enhancing diversity and accelerating convergence towards the global optimum. This is the first work to address the dynamic population issue in deep clustering through RL, combined with Transfer Learning to optimize evolutionary algorithms. Our results demonstrate significant improvements in clustering performance, positioning ADSC-DPE-RT as a competitive alternative to state-of-the-art deep clustering methods.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.