{"title":"Existence, multiplicity and asymptotic behaviour of normalized solutions to non-autonomous fractional HLS lower critical Choquard equation","authors":"Jianlun Liu, Hong-Rui Sun, Ziheng Zhang","doi":"10.1007/s13540-024-00338-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a class of non-autonomous lower critical fractional Choquard equation with a pure-power nonlinear perturbation. Under some reasonable assumptions on the potential function <i>h</i>, we prove the existence and discuss asymptotic behavior of ground state solutions for our problem. Meanwhile, we also prove that the number of normalized solutions is at least the number of global maximum points of <i>h</i> when <span>\\(\\varepsilon \\)</span> is small enough.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"15 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00338-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study a class of non-autonomous lower critical fractional Choquard equation with a pure-power nonlinear perturbation. Under some reasonable assumptions on the potential function h, we prove the existence and discuss asymptotic behavior of ground state solutions for our problem. Meanwhile, we also prove that the number of normalized solutions is at least the number of global maximum points of h when \(\varepsilon \) is small enough.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.