Existence, multiplicity and asymptotic behaviour of normalized solutions to non-autonomous fractional HLS lower critical Choquard equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jianlun Liu, Hong-Rui Sun, Ziheng Zhang
{"title":"Existence, multiplicity and asymptotic behaviour of normalized solutions to non-autonomous fractional HLS lower critical Choquard equation","authors":"Jianlun Liu, Hong-Rui Sun, Ziheng Zhang","doi":"10.1007/s13540-024-00338-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a class of non-autonomous lower critical fractional Choquard equation with a pure-power nonlinear perturbation. Under some reasonable assumptions on the potential function <i>h</i>, we prove the existence and discuss asymptotic behavior of ground state solutions for our problem. Meanwhile, we also prove that the number of normalized solutions is at least the number of global maximum points of <i>h</i> when <span>\\(\\varepsilon \\)</span> is small enough.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00338-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a class of non-autonomous lower critical fractional Choquard equation with a pure-power nonlinear perturbation. Under some reasonable assumptions on the potential function h, we prove the existence and discuss asymptotic behavior of ground state solutions for our problem. Meanwhile, we also prove that the number of normalized solutions is at least the number of global maximum points of h when \(\varepsilon \) is small enough.

非自治分式 HLS 下临界 Choquard 方程归一化解的存在性、多重性和渐近行为
在本文中,我们研究了一类具有纯功率非线性扰动的非自治下临界分式乔夸特方程。在势函数 h 的一些合理假设下,我们证明了问题的基态解的存在并讨论了其渐近行为。同时,我们还证明了当\(\varepsilon \)足够小时,归一化解的数目至少是 h 的全局最大点的数目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信