Yixing Ji, Shengjiang Kong, Weiwei Wang, Xixi Jia, Xiangchu Feng
{"title":"Iterative decoupling deconvolution network for image restoration","authors":"Yixing Ji, Shengjiang Kong, Weiwei Wang, Xixi Jia, Xiangchu Feng","doi":"10.1016/j.jvcir.2024.104288","DOIUrl":null,"url":null,"abstract":"<div><p>The iterative decoupled deblurring BM3D (IDDBM3D) (Danielyan et al., 2011) combines the analysis representation and the synthesis representation, where deblurring and denoising operations are decoupled, so that both problems can be easily solved. However, the IDDBM3D has some limitations. First, the analysis transformation and the synthesis transformation are analytical, thus have limited representation ability. Second, it is difficult to effectively remove image noise from threshold transformation. Third, there exists hyper-parameters to be tuned manually, which is difficult and time consuming. In this work, we propose an iterative decoupling deconvolution network(IDDNet), by unrolling the iterative decoupling algorithm of the IDDBM3D. In the proposed IDDNet, the analysis/synthesis transformation are implemented by encoder/decoder modules; the denoising is implemented by convolutional neural network based denoiser; the hyper-parameters are estimated by hyper-parameter module. We apply our models for image deblurring and super-resolution. Experimental results show that the IDDNet significantly outperforms the state-of-the-art unfolding networks.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104288"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104732032400244X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The iterative decoupled deblurring BM3D (IDDBM3D) (Danielyan et al., 2011) combines the analysis representation and the synthesis representation, where deblurring and denoising operations are decoupled, so that both problems can be easily solved. However, the IDDBM3D has some limitations. First, the analysis transformation and the synthesis transformation are analytical, thus have limited representation ability. Second, it is difficult to effectively remove image noise from threshold transformation. Third, there exists hyper-parameters to be tuned manually, which is difficult and time consuming. In this work, we propose an iterative decoupling deconvolution network(IDDNet), by unrolling the iterative decoupling algorithm of the IDDBM3D. In the proposed IDDNet, the analysis/synthesis transformation are implemented by encoder/decoder modules; the denoising is implemented by convolutional neural network based denoiser; the hyper-parameters are estimated by hyper-parameter module. We apply our models for image deblurring and super-resolution. Experimental results show that the IDDNet significantly outperforms the state-of-the-art unfolding networks.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.