Seismic retrofit of underground structure with large opening using beam-end horizontal haunch

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL
{"title":"Seismic retrofit of underground structure with large opening using beam-end horizontal haunch","authors":"","doi":"10.1016/j.istruc.2024.107234","DOIUrl":null,"url":null,"abstract":"<div><p>Underground structures with large openings (USLO), especially those that allow natural light and fresh air, have emerged as alternatives to mitigate the weaknesses of traditional underground frame-box structures. For the USLO, two ends of the upper-story beam are generally recognised as weakest regions during strong earthquakes; however, insufficient attention has been paid to improving their seismic safety. This study performed a detailed numerical comparison of the conventional USLO and beam-end horizontal haunch retrofitting USLO under different seismic intensities, and evaluated the effectiveness of the proposed retrofitting scheme. The finite element numerical modelling approach was validated against shaking table test results, where the numerical results were in good agreement with measured data. Based on the validated numerical methods, the two ends of the upper-story beam in the conventional USLO were strengthened with horizontal haunches. Both soil-structure systems were excited by equal earthquake loads. Various seismic responses were compared between the conventional and retrofitted USLO, including structural strain, tensile damage, and story drift. Numerical simulation results indicate that beam-end horizontal haunch retrofitting significantly reduces the tensile strain and maximum damage degree at the ends of the upper-story beam, as well as the upper-story drift, without changing the lower-story drift. Therefore, beam-end horizontal haunch retrofitting is a potentially effective measure for improving the seismic performance of the USLO.</p></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012424013869","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Underground structures with large openings (USLO), especially those that allow natural light and fresh air, have emerged as alternatives to mitigate the weaknesses of traditional underground frame-box structures. For the USLO, two ends of the upper-story beam are generally recognised as weakest regions during strong earthquakes; however, insufficient attention has been paid to improving their seismic safety. This study performed a detailed numerical comparison of the conventional USLO and beam-end horizontal haunch retrofitting USLO under different seismic intensities, and evaluated the effectiveness of the proposed retrofitting scheme. The finite element numerical modelling approach was validated against shaking table test results, where the numerical results were in good agreement with measured data. Based on the validated numerical methods, the two ends of the upper-story beam in the conventional USLO were strengthened with horizontal haunches. Both soil-structure systems were excited by equal earthquake loads. Various seismic responses were compared between the conventional and retrofitted USLO, including structural strain, tensile damage, and story drift. Numerical simulation results indicate that beam-end horizontal haunch retrofitting significantly reduces the tensile strain and maximum damage degree at the ends of the upper-story beam, as well as the upper-story drift, without changing the lower-story drift. Therefore, beam-end horizontal haunch retrofitting is a potentially effective measure for improving the seismic performance of the USLO.

利用梁端水平锚杆对大开口地下结构进行抗震改造
有大开口的地下建筑(USLO),尤其是那些可以自然采光和呼吸新鲜空气的地下建筑,已成为减轻传统地下框架箱式结构弱点的替代方案。就 USLO 而言,上层梁的两端通常被认为是强震时最薄弱的区域;然而,人们对提高其抗震安全性的关注却不够。本研究对不同地震烈度下的传统 USLO 和梁端水平锚固加固 USLO 进行了详细的数值比较,并评估了建议加固方案的有效性。有限元数值建模方法与振动台试验结果进行了验证,数值结果与测量数据吻合良好。根据验证的数值方法,对传统 USLO 上层梁的两端进行了水平支撑加固。两种土壤-结构系统均受到相同的地震荷载激励。比较了传统 USLO 和加固 USLO 的各种地震反应,包括结构应变、拉伸破坏和楼层漂移。数值模拟结果表明,在不改变下层漂移的情况下,梁端水平暗拱加固可显著降低上层梁端拉应变和最大破坏程度,以及上层漂移。因此,梁端水平吊点改造是改善 USLO 抗震性能的潜在有效措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信