Guido Vinci-Carlavan , Daniel Rossit , Adrián Toncovich
{"title":"A digital twin for operations management in manufacturing engineering-to-order environments","authors":"Guido Vinci-Carlavan , Daniel Rossit , Adrián Toncovich","doi":"10.1016/j.jii.2024.100679","DOIUrl":null,"url":null,"abstract":"<div><p>Engineering-to-order (ETO) companies satisfy a very demanding market, where each client specifies the type of product they require and actively participate in the design, selection of materials, and other activities. This converts the production processes of ETO companies into one-of-a-kind processes (OKP) type, where production planning and control (PPC) activities are extremely complex. The cause of this complexity is the little or no standardization between the different production cycles that must be executed, as each cycle is of the OKP type. In addition, Intra-logistics operations represent a key factor in ETO PPC, since each piece of work-in-process or sub-assembly can be extremely large, heavy or complicated of handling. Then, ETO systems involve heterogenous production and intra-logistics processes, where the associated information is fragmented and diverse. This hampers a streamline information processing and operations management. To overcome all these issues, a Digital Twin (DT) approach is proposed. The DT designed and developed here allows to integrate engineering and planning departments to be effectively integrated with the shop-floor and operations management in a smooth and effective manner. To solve interoperability and information access without overloading data-entry tasks novel information structures are designed, along with the logical processes that support them. These logical processes enable DT to generate autonomously intra-logistics operations orders from the engineering plans, fostering the system integration and agility. This DT is tested on a manufacturing ETO case study and shows its efficiency.</p></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"42 ","pages":"Article 100679"},"PeriodicalIF":10.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001225","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Engineering-to-order (ETO) companies satisfy a very demanding market, where each client specifies the type of product they require and actively participate in the design, selection of materials, and other activities. This converts the production processes of ETO companies into one-of-a-kind processes (OKP) type, where production planning and control (PPC) activities are extremely complex. The cause of this complexity is the little or no standardization between the different production cycles that must be executed, as each cycle is of the OKP type. In addition, Intra-logistics operations represent a key factor in ETO PPC, since each piece of work-in-process or sub-assembly can be extremely large, heavy or complicated of handling. Then, ETO systems involve heterogenous production and intra-logistics processes, where the associated information is fragmented and diverse. This hampers a streamline information processing and operations management. To overcome all these issues, a Digital Twin (DT) approach is proposed. The DT designed and developed here allows to integrate engineering and planning departments to be effectively integrated with the shop-floor and operations management in a smooth and effective manner. To solve interoperability and information access without overloading data-entry tasks novel information structures are designed, along with the logical processes that support them. These logical processes enable DT to generate autonomously intra-logistics operations orders from the engineering plans, fostering the system integration and agility. This DT is tested on a manufacturing ETO case study and shows its efficiency.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.