Interfacial thermal resistance in stanene/ hexagonal boron nitride van der Waals heterostructures: A molecular dynamics study

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Interfacial thermal resistance in stanene/ hexagonal boron nitride van der Waals heterostructures: A molecular dynamics study","authors":"","doi":"10.1016/j.commatsci.2024.113359","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, the stanene (Sn)/hexagonal boron nitride (h-BN) van der Waals heterostructure (vdW) has garnered significant attention among the scientific community due to its distinctive electrical, optical, and thermal characteristics. Despite the promising potential of this heterostructure, the interfacial thermal resistance (ITR) between the Sn and h-BN layers remains unexplored. Understanding and modulating this ITR are essential steps towards harnessing the maximum potential of these materials in practical nanodevices. This study aims to investigate the interfacial thermal resistance (ITR) between the Sn and h-BN layers through the use of conventional molecular dynamics (MD) simulation. The transient pump–probe heating technique, commonly referred to as the Fast Pump Probe (FPP) approach, is utilized to analyze the ITR of the Sn/h-BN heterostructure. The estimated ITR value of a 30 × 10 nm<sup>2</sup> Sn/h-BN nanosheet is found to be around ∼ 7 × 10<sup>-8</sup> K.m<sup>2</sup>/W at room temperature. This study comprehensively investigates the impact of various internal and external parameters including nanosheet size, system temperature, contact pressure, vacancy concentration, and mechanical tensile strain (uniaxial and biaxial) on ITR, providing an extensive understanding of how these factors collectively affect the thermal resistance between Sn and h-BN layers. The simulation<!--> <!-->results demonstrate a consistent decline in ITR by approximately ∼ 93 %, ∼45 %, ∼65 %, and ∼ 33 % with the increasing system size, temperature, contact pressure, and defect concentration, respectively. In contrast, increasing mechanical strain leads to a substantial enhancement in ITR, with a maximum increase of approximately ∼ 47 % under uniaxial tensile strain and almost ∼ 99 % under biaxial tensile strain. Moreover, the pristine Sn/h-BN heterostructure exhibits no significant thermal rectification effect. The Phonon Density of States (PDOS) profile of the Sn and h-BN layer is calculated to elucidate this underlying behavior of ITR. The PDOS analysis reveals that heat is transported from h-BN to the Sn layer through efficient coupling of low-frequency flexural phonons between these two materials. This work will provide both theoretical support and logical guidelines for modulating thermal resistance across diverse dissimilar material interfaces, which will be necessary for the development of advanced nanodevices used in next-generation nanoelectronics, nanophotonic, and optoelectronics applications.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005809","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the stanene (Sn)/hexagonal boron nitride (h-BN) van der Waals heterostructure (vdW) has garnered significant attention among the scientific community due to its distinctive electrical, optical, and thermal characteristics. Despite the promising potential of this heterostructure, the interfacial thermal resistance (ITR) between the Sn and h-BN layers remains unexplored. Understanding and modulating this ITR are essential steps towards harnessing the maximum potential of these materials in practical nanodevices. This study aims to investigate the interfacial thermal resistance (ITR) between the Sn and h-BN layers through the use of conventional molecular dynamics (MD) simulation. The transient pump–probe heating technique, commonly referred to as the Fast Pump Probe (FPP) approach, is utilized to analyze the ITR of the Sn/h-BN heterostructure. The estimated ITR value of a 30 × 10 nm2 Sn/h-BN nanosheet is found to be around ∼ 7 × 10-8 K.m2/W at room temperature. This study comprehensively investigates the impact of various internal and external parameters including nanosheet size, system temperature, contact pressure, vacancy concentration, and mechanical tensile strain (uniaxial and biaxial) on ITR, providing an extensive understanding of how these factors collectively affect the thermal resistance between Sn and h-BN layers. The simulation results demonstrate a consistent decline in ITR by approximately ∼ 93 %, ∼45 %, ∼65 %, and ∼ 33 % with the increasing system size, temperature, contact pressure, and defect concentration, respectively. In contrast, increasing mechanical strain leads to a substantial enhancement in ITR, with a maximum increase of approximately ∼ 47 % under uniaxial tensile strain and almost ∼ 99 % under biaxial tensile strain. Moreover, the pristine Sn/h-BN heterostructure exhibits no significant thermal rectification effect. The Phonon Density of States (PDOS) profile of the Sn and h-BN layer is calculated to elucidate this underlying behavior of ITR. The PDOS analysis reveals that heat is transported from h-BN to the Sn layer through efficient coupling of low-frequency flexural phonons between these two materials. This work will provide both theoretical support and logical guidelines for modulating thermal resistance across diverse dissimilar material interfaces, which will be necessary for the development of advanced nanodevices used in next-generation nanoelectronics, nanophotonic, and optoelectronics applications.

斯坦尼/六方氮化硼范德华异质结构中的界面热阻:分子动力学研究
最近,链烯(Sn)/六方氮化硼(h-BN)范德华异质结构(vdW)因其独特的电学、光学和热学特性而引起了科学界的极大关注。尽管这种异质结构潜力巨大,但锡和 h-BN 层之间的界面热阻(ITR)仍未得到探索。要想在实用纳米器件中发挥这些材料的最大潜力,了解和调节这种 ITR 是必不可少的步骤。本研究旨在通过使用传统的分子动力学(MD)模拟来研究锡层和 h-BN 层之间的界面热阻(ITR)。利用瞬态泵探针加热技术(通常称为快速泵探针(FPP)方法)来分析锡/h-BN 异质结构的 ITR。在室温下,30 × 10 nm2 Sn/h-BN 纳米片的估计 ITR 值约为∼ 7 × 10-8 K.m2/W。本研究全面考察了纳米片尺寸、系统温度、接触压力、空位浓度和机械拉伸应变(单轴和双轴)等各种内部和外部参数对 ITR 的影响,从而广泛了解了这些因素如何共同影响锡层和 h-BN 层之间的热阻。模拟结果表明,随着系统尺寸、温度、接触压力和缺陷浓度的增加,ITR 持续下降,降幅分别约为∼ 93 %、∼ 45 %、∼ 65 % 和∼ 33 %。相反,机械应变的增加会导致 ITR 的大幅提高,在单轴拉伸应变下,ITR 的最大增幅约为∼ 47 %,而在双轴拉伸应变下,增幅几乎达到∼ 99 %。此外,原始的锡/h-氮杂结构没有表现出明显的热整流效应。通过计算锡层和 h-BN 层的声子态密度(PDOS)曲线,可以阐明 ITR 的这一基本行为。PDOS 分析表明,热量是通过这两种材料之间低频挠曲声子的有效耦合从 h-BN 传输到锡层的。这项工作将为调节不同异种材料界面的热阻提供理论支持和逻辑指导,这对于开发用于下一代纳米电子学、纳米光子学和光电子学应用的先进纳米器件是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信