Observation of voltage dependent negative differential resistance (NDR) in SnS2-GO nanocomposites

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
{"title":"Observation of voltage dependent negative differential resistance (NDR) in SnS2-GO nanocomposites","authors":"","doi":"10.1016/j.physe.2024.116102","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the structural, optical, and electrical properties of tin disulfide (SnS<sub>2</sub>) and SnS<sub>2</sub>-graphene oxide (GO) nanosheets synthesized via chemical bath deposition method (CBD). Structural characterization confirms the formation of hexagonal crystal phases with nanosheet morphology. It shows a well distribution of nanosheet average square sizes of 10 nm for SnS<sub>2</sub> and 6 nm for SnS<sub>2</sub>-GO. Optical analysis shows blue shifts in absorption edges compared to bulk SnS<sub>2</sub>, attributed to quantum confinement effects. Photoluminescence emission peaks exhibit different energy levels in SnS<sub>2</sub>-GO originated to native defects. The composites show a sharp reduced of PL intensity due to enhanced charge carrier separation. Electrical measurements on SnS<sub>2</sub>-GO thin films demonstrate negative differential resistance (NDR) behavior in both planar and sandwich contact configurations, suggesting electron injection/extraction mechanisms. The NDR phenomenon exhibits a dependence on voltage scan rate, indicating the involvement of electronic and ionic elements in charge transport mechanisms. Overall, this study provides insights into the NDR properties of SnS<sub>2</sub>-GO nanocomposite, laying the groundwork for their potential applications in optoelectronics and nanoelectronics.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002066","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the structural, optical, and electrical properties of tin disulfide (SnS2) and SnS2-graphene oxide (GO) nanosheets synthesized via chemical bath deposition method (CBD). Structural characterization confirms the formation of hexagonal crystal phases with nanosheet morphology. It shows a well distribution of nanosheet average square sizes of 10 nm for SnS2 and 6 nm for SnS2-GO. Optical analysis shows blue shifts in absorption edges compared to bulk SnS2, attributed to quantum confinement effects. Photoluminescence emission peaks exhibit different energy levels in SnS2-GO originated to native defects. The composites show a sharp reduced of PL intensity due to enhanced charge carrier separation. Electrical measurements on SnS2-GO thin films demonstrate negative differential resistance (NDR) behavior in both planar and sandwich contact configurations, suggesting electron injection/extraction mechanisms. The NDR phenomenon exhibits a dependence on voltage scan rate, indicating the involvement of electronic and ionic elements in charge transport mechanisms. Overall, this study provides insights into the NDR properties of SnS2-GO nanocomposite, laying the groundwork for their potential applications in optoelectronics and nanoelectronics.

观察 SnS2-GO 纳米复合材料中与电压相关的负微分电阻 (NDR)
本研究探讨了通过化学沉积法(CBD)合成的二硫化锡(SnS2)和二硫化锡-氧化石墨烯(GO)纳米片的结构、光学和电学特性。结构表征证实了纳米片形态的六方晶系的形成。结果表明,SnS2 和 SnS2-GO 的纳米片平均正方形尺寸分布均匀,分别为 10 nm 和 6 nm。光学分析表明,与块状 SnS2 相比,由于量子约束效应,吸收边缘发生了蓝色偏移。光致发光发射峰在 SnS2-GO 中表现出不同的能级,这与原生缺陷有关。由于电荷载流子分离增强,复合材料的光致发光强度急剧下降。对 SnS2-GO 薄膜进行的电学测量表明,在平面和夹层接触配置中都存在负微分电阻 (NDR) 现象,这表明存在电子注入/抽取机制。负差分电阻现象与电压扫描速率有关,表明电荷传输机制中涉及电子和离子元素。总之,这项研究深入揭示了 SnS2-GO 纳米复合材料的 NDR 特性,为其在光电子学和纳米电子学中的潜在应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信