{"title":"Time-resolved photoemission electron microscopy of semiconductor interfaces","authors":"Sofiia Kosar , Keshav M. Dani","doi":"10.1016/j.progsurf.2024.100745","DOIUrl":null,"url":null,"abstract":"<div><p>Semiconductor interfaces are at the heart of the functionality of many devices for opto-electronic applications. At these interfaces, the importance of ultrafast dynamics – processes that occur on sub-nanosecond timescales – has been long understood. While these ultrafast spectroscopic studies have revealed important information, there remains a rich array of physics that is hidden within sub-micrometer length scales when using spatially-averaged techniques. However, powerful tools that could access material dynamics in semiconductors simultaneously at ultrafast time- and sub-micrometer length scales are challenging to implement. Here, we review recent developments in time-resolved photoemission electron microscopy as a technique to study ultrafast electron dynamics at semiconductor interfaces at the nanoscale. In particular, we review recent work in traditional semiconductor interfaces and heterojunctions, low-dimensional materials, and semiconductors for photovoltaic applications.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"99 3","pages":"Article 100745"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S007968162400011X/pdfft?md5=67743a6a4967584d2909da3e53711127&pid=1-s2.0-S007968162400011X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007968162400011X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Semiconductor interfaces are at the heart of the functionality of many devices for opto-electronic applications. At these interfaces, the importance of ultrafast dynamics – processes that occur on sub-nanosecond timescales – has been long understood. While these ultrafast spectroscopic studies have revealed important information, there remains a rich array of physics that is hidden within sub-micrometer length scales when using spatially-averaged techniques. However, powerful tools that could access material dynamics in semiconductors simultaneously at ultrafast time- and sub-micrometer length scales are challenging to implement. Here, we review recent developments in time-resolved photoemission electron microscopy as a technique to study ultrafast electron dynamics at semiconductor interfaces at the nanoscale. In particular, we review recent work in traditional semiconductor interfaces and heterojunctions, low-dimensional materials, and semiconductors for photovoltaic applications.
期刊介绍:
Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.