Haiwei Qiao , Ping Zhang , Zhen Li , Lei Huang , Zhipeng Wu , Shuo Gao , Chang Liu , Shuang Liang , Jianmin Zhou , Wei Sun
{"title":"Snow depth retrieval method for PolSAR data using multi-parameters snow backscattering model","authors":"Haiwei Qiao , Ping Zhang , Zhen Li , Lei Huang , Zhipeng Wu , Shuo Gao , Chang Liu , Shuang Liang , Jianmin Zhou , Wei Sun","doi":"10.1016/j.isprsjprs.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>Snow depth (SD) is a crucial property of snow, its spatial and temporal variation is important for global change, snowmelt runoff simulation, disaster prediction, and freshwater storage estimation. Polarimetric Synthetic Aperture Radar (PolSAR) can precisely describe the backscattering of the target and emerge as an effective tool for SD retrieval. The backscattering component of dry snow is mainly composed of volume scattering from the snowpack and surface scattering from the snow-ground interface. However, the existing method for retrieving SD using PolSAR data has the problems of over-reliance on in-situ data and ignoring surface scattering from the snow-ground interface. We proposed a novel SD retrieval method for PolSAR data by fully considering the primary backscattering components of snow and through multi-parameter estimation to solve the snow backscattering model. Firstly, a snow backscattering model was formed by combining the small permittivity volume scattering model and the Michigan semi-empirical surface scattering model to simulate the different scattering components of snow, and the corresponding backscattering coefficients were extracted using the Yamaguchi decomposition. Then, the snow permittivity was calculated through generalized volume parameters and the extinction coefficient was further estimated through modeling. Finally, the snow backscattering model was solved by these parameters to retrieve SD. The proposed method was validated by Ku-band UAV SAR data acquired in Altay, Xinjiang, and the accuracy was evaluated by in-situ data. The correlation coefficient, root mean square error, and mean absolute error are 0.80, 4.49 cm, and 3.95 cm, respectively. Meanwhile, the uncertainties generated by different SD, model parameters estimation, solution method, and underlying surface are analyzed to enhance the generality of the proposed method.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 136-149"},"PeriodicalIF":10.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003411","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Snow depth (SD) is a crucial property of snow, its spatial and temporal variation is important for global change, snowmelt runoff simulation, disaster prediction, and freshwater storage estimation. Polarimetric Synthetic Aperture Radar (PolSAR) can precisely describe the backscattering of the target and emerge as an effective tool for SD retrieval. The backscattering component of dry snow is mainly composed of volume scattering from the snowpack and surface scattering from the snow-ground interface. However, the existing method for retrieving SD using PolSAR data has the problems of over-reliance on in-situ data and ignoring surface scattering from the snow-ground interface. We proposed a novel SD retrieval method for PolSAR data by fully considering the primary backscattering components of snow and through multi-parameter estimation to solve the snow backscattering model. Firstly, a snow backscattering model was formed by combining the small permittivity volume scattering model and the Michigan semi-empirical surface scattering model to simulate the different scattering components of snow, and the corresponding backscattering coefficients were extracted using the Yamaguchi decomposition. Then, the snow permittivity was calculated through generalized volume parameters and the extinction coefficient was further estimated through modeling. Finally, the snow backscattering model was solved by these parameters to retrieve SD. The proposed method was validated by Ku-band UAV SAR data acquired in Altay, Xinjiang, and the accuracy was evaluated by in-situ data. The correlation coefficient, root mean square error, and mean absolute error are 0.80, 4.49 cm, and 3.95 cm, respectively. Meanwhile, the uncertainties generated by different SD, model parameters estimation, solution method, and underlying surface are analyzed to enhance the generality of the proposed method.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.