{"title":"Implicit-Explicit schemes for decoupling multicontinuum problems in porous media","authors":"","doi":"10.1016/j.jcp.2024.113425","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we present an efficient way to decouple the multicontinuum problems. To construct decoupled schemes, we propose Implicit-Explicit time approximation in general form and study them for the fine-scale and coarse-scale space approximations. We use a finite-volume method for fine-scale approximation, and the nonlocal multicontinuum (NLMC) method is used to construct a coarse-scale approximation. The NLMC method is a multiscale method for developing an accurate and physically meaningful coarse-scale model based on defining the macroscale variables. The multiscale basis functions are constructed in local domains by solving constraint energy minimization problems and projecting the system to the coarse grid. The resulting basis functions have exponential decay properties and lead to the accurate approximation on a coarse grid. We construct a fully Implicit time approximation for semi-discrete systems arising after fine-scale and coarse-scale space approximations. We investigate the stability of the two and three-level schemes for fully Implicit and Implicit-Explicit time approximations schemes for multicontinuum problems in fractured porous media. We show that combining the decoupling technique with multiscale approximation leads to developing an accurate and efficient solver for multicontinuum problems.</p></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124006739","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present an efficient way to decouple the multicontinuum problems. To construct decoupled schemes, we propose Implicit-Explicit time approximation in general form and study them for the fine-scale and coarse-scale space approximations. We use a finite-volume method for fine-scale approximation, and the nonlocal multicontinuum (NLMC) method is used to construct a coarse-scale approximation. The NLMC method is a multiscale method for developing an accurate and physically meaningful coarse-scale model based on defining the macroscale variables. The multiscale basis functions are constructed in local domains by solving constraint energy minimization problems and projecting the system to the coarse grid. The resulting basis functions have exponential decay properties and lead to the accurate approximation on a coarse grid. We construct a fully Implicit time approximation for semi-discrete systems arising after fine-scale and coarse-scale space approximations. We investigate the stability of the two and three-level schemes for fully Implicit and Implicit-Explicit time approximations schemes for multicontinuum problems in fractured porous media. We show that combining the decoupling technique with multiscale approximation leads to developing an accurate and efficient solver for multicontinuum problems.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.