Dynamic and modal analysis of nearly incompressible structures with stabilised displacement-volumetric strain formulations

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"Dynamic and modal analysis of nearly incompressible structures with stabilised displacement-volumetric strain formulations","authors":"","doi":"10.1016/j.cma.2024.117382","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a dynamic formulation for the simulation of nearly incompressible structures using a mixed finite element method with equal-order interpolation pairs. Specifically, the nodal unknowns are the displacement and the volumetric strain component, something that makes possible the reconstruction of the complete stain at the integration point level and thus enables the use of strain-driven constitutive laws. Furthermore, we also discuss the resulting eigenvalue problem and how it can be applied for the modal analysis of linear elastic solids. The article puts special emphasis on the stabilisation technique used, which becomes crucial in the resolution of the generalised eigenvalue problem. In particular, we prove that using a variational multiscale method assuming the sub-grid scales to lie in the finite element space orthogonal to that of the approximation, namely the Orthogonal Sub-Grid Scales (OSGS), results in a convenient linear and symmetric generalised eigenvalue problem. The correctness, convergence and performance of the method are proven by solving a series of two- and three-dimensional examples.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045782524006376/pdfft?md5=fcb000aeba91347bdee64c79e461edd0&pid=1-s2.0-S0045782524006376-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524006376","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a dynamic formulation for the simulation of nearly incompressible structures using a mixed finite element method with equal-order interpolation pairs. Specifically, the nodal unknowns are the displacement and the volumetric strain component, something that makes possible the reconstruction of the complete stain at the integration point level and thus enables the use of strain-driven constitutive laws. Furthermore, we also discuss the resulting eigenvalue problem and how it can be applied for the modal analysis of linear elastic solids. The article puts special emphasis on the stabilisation technique used, which becomes crucial in the resolution of the generalised eigenvalue problem. In particular, we prove that using a variational multiscale method assuming the sub-grid scales to lie in the finite element space orthogonal to that of the approximation, namely the Orthogonal Sub-Grid Scales (OSGS), results in a convenient linear and symmetric generalised eigenvalue problem. The correctness, convergence and performance of the method are proven by solving a series of two- and three-dimensional examples.

采用稳定位移-体积应变公式对几乎不可压缩结构进行动态和模态分析
本文介绍了使用等阶插值对混合有限元法模拟近不可压缩结构的动态公式。具体来说,节点未知量是位移和体积应变分量,这使得在积分点水平重建完整污点成为可能,从而可以使用应变驱动的构成定律。此外,我们还讨论了由此产生的特征值问题,以及如何将其应用于线性弹性固体的模态分析。文章特别强调了所使用的稳定技术,该技术对解决广义特征值问题至关重要。特别是,我们证明了使用假设子网格尺度位于与近似空间正交的有限元空间的变分多尺度方法,即正交子网格尺度(OSGS),可以方便地解决线性和对称广义特征值问题。通过求解一系列二维和三维实例,证明了该方法的正确性、收敛性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信