{"title":"Catchment-driven trend of dissolved organic matter characteristics in the Hailar River, China","authors":"Sen Chai , Xin Zhang , Fei Xie , Xingjun Zhou , Changwei Lü","doi":"10.1016/j.apgeochem.2024.106162","DOIUrl":null,"url":null,"abstract":"<div><p>The association of dissolved organic matter (DOM) with natural watershed backgrounds and anthropogenic activities is crucial for environmental assessment and sustainable development of basins. This study investigated the catchment-driven trend of DOM characteristics in the Hailar River basin, China. The results identified three fluorescent components through EEM-PARAFAC models: a terrestrial humic-like component (C1), a humic-like component related to microbial activity (C2), and a UVA humic-like component (C3), which were influenced by Cl<sup>−</sup> and HCO<sub>3</sub><sup>−</sup> derived from rock weathering. The contents of water-extractable organic carbon (WEOC) extracted from soils surrounding the watershed significantly correlated with the concentrations of DOC and COD<sub>Cr</sub>. Furthermore, COD<sub>Cr</sub> exhibits heightened sensitivity to precipitation and temperature fluctuations, revealing the synergistic effects of environmental factors and natural background. The hydrochemical composition and DOM characteristics are predominantly influenced by their origins from the Greater Khingan forests, indicating a catchment-driven trend of DOM in the studied river. What's more, COD in Hailar river basin was mainly controlled by refractory dissolved organic matter (RDOM). This research underscores the need for context-specific environmental standards rather than a “one-size-fits-all” approach and offers scientific insights and methodologies for the rational assessment of water quality and aquatic ecosystem health in similar riverine systems.</p></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"175 ","pages":"Article 106162"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292724002671","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The association of dissolved organic matter (DOM) with natural watershed backgrounds and anthropogenic activities is crucial for environmental assessment and sustainable development of basins. This study investigated the catchment-driven trend of DOM characteristics in the Hailar River basin, China. The results identified three fluorescent components through EEM-PARAFAC models: a terrestrial humic-like component (C1), a humic-like component related to microbial activity (C2), and a UVA humic-like component (C3), which were influenced by Cl− and HCO3− derived from rock weathering. The contents of water-extractable organic carbon (WEOC) extracted from soils surrounding the watershed significantly correlated with the concentrations of DOC and CODCr. Furthermore, CODCr exhibits heightened sensitivity to precipitation and temperature fluctuations, revealing the synergistic effects of environmental factors and natural background. The hydrochemical composition and DOM characteristics are predominantly influenced by their origins from the Greater Khingan forests, indicating a catchment-driven trend of DOM in the studied river. What's more, COD in Hailar river basin was mainly controlled by refractory dissolved organic matter (RDOM). This research underscores the need for context-specific environmental standards rather than a “one-size-fits-all” approach and offers scientific insights and methodologies for the rational assessment of water quality and aquatic ecosystem health in similar riverine systems.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.