{"title":"Hematopoietic stem cell gene therapy to halt neurodegeneration","authors":"Alessandra Biffi","doi":"10.1016/j.neurot.2024.e00440","DOIUrl":null,"url":null,"abstract":"<div><p>Microglia play fundamental roles in multiple pathological primary and secondary processes affecting the central nervous system that ultimately result in neurodegeneration and for this reason they are considered as a key therapeutic target in several neurodegenerative diseases. Microglia-targeted therapies are directed at either restoring or modulating microglia function, to redirect their functional features toward neuroprotection. Among these strategies, hematopoietic stem cell gene therapy have proven to be endowed with a unique potential for replacing diseased microglia with engineered, transplant progeny cells that can integrate and exert relevant beneficial effects in the central nervous system of patients affected by inherited and acquired neurodegenerative conditions.</p></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878747924001272/pdfft?md5=6224d3b2e9d4d159fc4f8ea2aa2de4b7&pid=1-s2.0-S1878747924001272-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878747924001272","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microglia play fundamental roles in multiple pathological primary and secondary processes affecting the central nervous system that ultimately result in neurodegeneration and for this reason they are considered as a key therapeutic target in several neurodegenerative diseases. Microglia-targeted therapies are directed at either restoring or modulating microglia function, to redirect their functional features toward neuroprotection. Among these strategies, hematopoietic stem cell gene therapy have proven to be endowed with a unique potential for replacing diseased microglia with engineered, transplant progeny cells that can integrate and exert relevant beneficial effects in the central nervous system of patients affected by inherited and acquired neurodegenerative conditions.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.