Impact of Model Spatial Resolution on Global Geophysical Satellite-Derived Fine Particulate Matter

Dandan Zhang*, Randall V. Martin, Aaron van Donkelaar, Chi Li, Haihui Zhu and Alexei Lyapustin, 
{"title":"Impact of Model Spatial Resolution on Global Geophysical Satellite-Derived Fine Particulate Matter","authors":"Dandan Zhang*,&nbsp;Randall V. Martin,&nbsp;Aaron van Donkelaar,&nbsp;Chi Li,&nbsp;Haihui Zhu and Alexei Lyapustin,&nbsp;","doi":"10.1021/acsestair.4c0008410.1021/acsestair.4c00084","DOIUrl":null,"url":null,"abstract":"<p >Global geophysical satellite-derived ambient fine particulate matter (PM<sub>2.5</sub>) inference relies upon a geophysical relationship (η) from a chemical transport model to relate satellite retrievals of aerosol optical depth (AOD) to surface PM<sub>2.5</sub>. The resolution dependence of simulated η warrants further investigation. In this study, we calculate geophysical PM<sub>2.5</sub> with simulated η from the GEOS-Chem model in its high-performance configuration (GCHP) at cubed-sphere resolutions of C360 (∼25 km) and C48 (∼200 km) and satellite AOD at 0.01° (∼1 km). Annual geophysical PM<sub>2.5</sub> concentrations inferred from satellite AOD and GCHP simulations at ∼25 km and ∼200 km resolutions exhibit remarkable similarity (<i>R</i><sup>2</sup> = 0.96, slope = 1.03). This similarity in part reflects opposite resolution responses across components with population-weighted normalized mean difference (PW-NMD) increasing by 5% to 11% for primary species while decreasing by −30% to −5% for secondary species at finer resolution. Despite global similarity, our results also identify larger resolution sensitivities of η over isolated pollution sources and mountainous regions, where spatial contrast of aerosol concentration and composition is better represented at fine resolution. Our results highlight the resolution dependence of representing near-surface concentrations and the vertical distribution of chemically different species with implications for inferring ground-level PM<sub>2.5</sub> from columnar AOD.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"1 9","pages":"1112–1123 1112–1123"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Global geophysical satellite-derived ambient fine particulate matter (PM2.5) inference relies upon a geophysical relationship (η) from a chemical transport model to relate satellite retrievals of aerosol optical depth (AOD) to surface PM2.5. The resolution dependence of simulated η warrants further investigation. In this study, we calculate geophysical PM2.5 with simulated η from the GEOS-Chem model in its high-performance configuration (GCHP) at cubed-sphere resolutions of C360 (∼25 km) and C48 (∼200 km) and satellite AOD at 0.01° (∼1 km). Annual geophysical PM2.5 concentrations inferred from satellite AOD and GCHP simulations at ∼25 km and ∼200 km resolutions exhibit remarkable similarity (R2 = 0.96, slope = 1.03). This similarity in part reflects opposite resolution responses across components with population-weighted normalized mean difference (PW-NMD) increasing by 5% to 11% for primary species while decreasing by −30% to −5% for secondary species at finer resolution. Despite global similarity, our results also identify larger resolution sensitivities of η over isolated pollution sources and mountainous regions, where spatial contrast of aerosol concentration and composition is better represented at fine resolution. Our results highlight the resolution dependence of representing near-surface concentrations and the vertical distribution of chemically different species with implications for inferring ground-level PM2.5 from columnar AOD.

Abstract Image

模型空间分辨率对全球地球物理卫星得出的细颗粒物的影响
全球地球物理卫星得出的环境细颗粒物(PM2.5)推断依赖于化学传输模型中的地球物理关系(η),将卫星获取的气溶胶光学深度(AOD)与地表 PM2.5 联系起来。模拟η与分辨率的关系值得进一步研究。在这项研究中,我们利用高性能配置(GCHP)下的 GEOS-Chem 模型模拟 η 计算了地球物理 PM2.5,其立方球分辨率为 C360(∼25 公里)和 C48(∼200 公里),卫星 AOD 为 0.01°(∼1 公里)。从卫星 AOD 和 GCHP 模拟推断出的年地球物理 PM2.5 浓度在 25 千米和 200 千米分辨率下表现出显著的相似性(R2 = 0.96,斜率 = 1.03)。这种相似性在一定程度上反映了各成分的分辨率反应相反,在更精细的分辨率下,初级物种的种群加权归一化平均差(PW-NMD)增加了 5%到 11%,而次级物种则减少了-30%到-5%。尽管具有全球相似性,但我们的结果还发现,在孤立的污染源和山区,η 的分辨率敏感性更大,在这些地区,气溶胶浓度和组成的空间对比在精细分辨率下表现得更好。我们的结果凸显了近地表浓度和不同化学成分的垂直分布对分辨率的依赖性,这对从柱状 AOD 推断地面 PM2.5 有一定影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信