{"title":"Rotational Interval Exchange Transformations","authors":"Alexey Teplinsky","doi":"10.1007/s11253-024-02334-7","DOIUrl":null,"url":null,"abstract":"<p>We prove the equivalence of two possible definitions of rotational interval exchange transformations: by the first definition, this is the first return map for the rotation of a circle onto a union of finitely many circle arcs, whereas by the second definition, this is an interval exchange with a scheme (in a sense of interval rearrangement ensemble) whose dual is also an interval exchange scheme.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02334-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We prove the equivalence of two possible definitions of rotational interval exchange transformations: by the first definition, this is the first return map for the rotation of a circle onto a union of finitely many circle arcs, whereas by the second definition, this is an interval exchange with a scheme (in a sense of interval rearrangement ensemble) whose dual is also an interval exchange scheme.