P. S. Lekshmi Priya, S. Behera, S. Parida, Abhisek Choudhary, Dhiraj Kumar Rana
{"title":"Flexible P(VDF–TrFE)/BNT–BT composite films and their dielectric, ferroelectric and energy storage properties","authors":"P. S. Lekshmi Priya, S. Behera, S. Parida, Abhisek Choudhary, Dhiraj Kumar Rana","doi":"10.1557/s43578-024-01404-7","DOIUrl":null,"url":null,"abstract":"<p>The dielectric, ferroelectric and energy storage properties of 0–3 composite systems with 0.92(Bi<sub>0.5</sub>Na<sub>0.5</sub>)TiO<sub>3</sub>–0.08BaTiO<sub>3</sub>(BNT–BT) ceramics and Poly(vinylidene fluoride trifluoroethylene) P(VDF–TrFE) copolymer were investigated. The composites are prepared by solvent casting followed by hot-pressing technique. The presence of good ferroelectric properties in the composites is confirmed by the electroactive β-phase which was found to be more than 80% in almost all the composites. The inorganic ceramic fillers improve the dielectric properties of the ceramics. The polarisation response in the composite film increases because of the interface effect between the polymer matrix and ceramic filler. The room-temperature ferroelectric hysteresis loops indicate an increase in remnant polarisation of the matrix with the concentration of filler. The energy storage density efficiency of the composites changes from 81 to 58% upon adding the ceramic filler. Piezoelectric properties of P(VDF–TrFE)–0.92(Bi<sub>0.5</sub>Na<sub>0.5</sub>)TiO<sub>3</sub>–0.08BaTiO<sub>3</sub> composite were also investigated and found to be increased. So this composite is preferable for energy storage as well as harvesting applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"30 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01404-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The dielectric, ferroelectric and energy storage properties of 0–3 composite systems with 0.92(Bi0.5Na0.5)TiO3–0.08BaTiO3(BNT–BT) ceramics and Poly(vinylidene fluoride trifluoroethylene) P(VDF–TrFE) copolymer were investigated. The composites are prepared by solvent casting followed by hot-pressing technique. The presence of good ferroelectric properties in the composites is confirmed by the electroactive β-phase which was found to be more than 80% in almost all the composites. The inorganic ceramic fillers improve the dielectric properties of the ceramics. The polarisation response in the composite film increases because of the interface effect between the polymer matrix and ceramic filler. The room-temperature ferroelectric hysteresis loops indicate an increase in remnant polarisation of the matrix with the concentration of filler. The energy storage density efficiency of the composites changes from 81 to 58% upon adding the ceramic filler. Piezoelectric properties of P(VDF–TrFE)–0.92(Bi0.5Na0.5)TiO3–0.08BaTiO3 composite were also investigated and found to be increased. So this composite is preferable for energy storage as well as harvesting applications.
期刊介绍:
Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome.
• Novel materials discovery
• Electronic, photonic and magnetic materials
• Energy Conversion and storage materials
• New thermal and structural materials
• Soft materials
• Biomaterials and related topics
• Nanoscale science and technology
• Advances in materials characterization methods and techniques
• Computational materials science, modeling and theory