Kodaira-Spencer maps for elliptic orbispheres as isomorphisms of Frobenius algebras

Sangwook Lee
{"title":"Kodaira-Spencer maps for elliptic orbispheres as isomorphisms of Frobenius algebras","authors":"Sangwook Lee","doi":"arxiv-2409.07814","DOIUrl":null,"url":null,"abstract":"Given a mirror pair of a symplectic manifold $X$ and a Landau-Ginzburg\npotential $W$, we are interested in the problem whether the quantum cohomology\nof $X$ and the Jacobian algebra of $W$ are isomorphic. Since those can be\nequipped with Frobenius algebra structures, we might ask whether they are\nisomorphic as Frobenius algebras. We show that the Kodaira-Spencer map gives a\nFrobenius algebra isomorphism for elliptic orbispheres, under the Floer\ntheoretic modification of the residue pairing.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a mirror pair of a symplectic manifold $X$ and a Landau-Ginzburg potential $W$, we are interested in the problem whether the quantum cohomology of $X$ and the Jacobian algebra of $W$ are isomorphic. Since those can be equipped with Frobenius algebra structures, we might ask whether they are isomorphic as Frobenius algebras. We show that the Kodaira-Spencer map gives a Frobenius algebra isomorphism for elliptic orbispheres, under the Floer theoretic modification of the residue pairing.
椭圆球面的小平-斯宾塞映射作为弗罗贝尼斯代数的同构物
给定交点流形 $X$ 和朗道-金兹堡势能 $W$ 的镜像对,我们感兴趣的问题是 $X$ 的量子同调和 $W$ 的雅各布代数是否同构。由于它们可以配备弗罗贝尼斯代数结构,我们可能会问它们作为弗罗贝尼斯代数是否同构。我们证明,在残差配对的弗洛理论修正下,小平-斯宾塞映射给出了椭圆球面的弗洛贝尼斯代数同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信