Taming numerical imprecision by adapting the KL divergence to negative probabilities

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Simon Pfahler, Peter Georg, Rudolf Schill, Maren Klever, Lars Grasedyck, Rainer Spang, Tilo Wettig
{"title":"Taming numerical imprecision by adapting the KL divergence to negative probabilities","authors":"Simon Pfahler, Peter Georg, Rudolf Schill, Maren Klever, Lars Grasedyck, Rainer Spang, Tilo Wettig","doi":"10.1007/s11222-024-10480-y","DOIUrl":null,"url":null,"abstract":"<p>The Kullback–Leibler (KL) divergence is frequently used in data science. For discrete distributions on large state spaces, approximations of probability vectors may result in a few small negative entries, rendering the KL divergence undefined. We address this problem by introducing a parameterized family of substitute divergence measures, the shifted KL (sKL) divergence measures. Our approach is generic and does not increase the computational overhead. We show that the sKL divergence shares important theoretical properties with the KL divergence and discuss how its shift parameters should be chosen. If Gaussian noise is added to a probability vector, we prove that the average sKL divergence converges to the KL divergence for small enough noise. We also show that our method solves the problem of negative entries in an application from computational oncology, the optimization of Mutual Hazard Networks for cancer progression using tensor-train approximations.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10480-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The Kullback–Leibler (KL) divergence is frequently used in data science. For discrete distributions on large state spaces, approximations of probability vectors may result in a few small negative entries, rendering the KL divergence undefined. We address this problem by introducing a parameterized family of substitute divergence measures, the shifted KL (sKL) divergence measures. Our approach is generic and does not increase the computational overhead. We show that the sKL divergence shares important theoretical properties with the KL divergence and discuss how its shift parameters should be chosen. If Gaussian noise is added to a probability vector, we prove that the average sKL divergence converges to the KL divergence for small enough noise. We also show that our method solves the problem of negative entries in an application from computational oncology, the optimization of Mutual Hazard Networks for cancer progression using tensor-train approximations.

Abstract Image

通过调整 KL 分歧以适应负概率来控制数值不精确性
Kullback-Leibler (KL) 发散经常用于数据科学。对于大型状态空间上的离散分布,概率向量的近似可能会导致一些小的负条目,从而使 KL 发散无法定义。为了解决这个问题,我们引入了一个参数化的替代发散度量系列,即移位 KL(sKL)发散度量。我们的方法是通用的,不会增加计算开销。我们证明了 sKL 发散与 KL 发散具有相同的重要理论属性,并讨论了如何选择其移动参数。如果在概率向量中加入高斯噪声,我们证明在噪声足够小的情况下,平均 sKL 发散收敛于 KL 发散。我们还证明,我们的方法解决了计算肿瘤学应用中的负条目问题,即使用张量-列车近似优化癌症进展的相互危害网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信