How Enzyme Selectivity and Immobilization Affect Catalytic Yields in Lipase-Catalyzed Processes

IF 0.7 4区 化学 Q4 CHEMISTRY, ORGANIC
Ibrahim Karume
{"title":"How Enzyme Selectivity and Immobilization Affect Catalytic Yields in Lipase-Catalyzed Processes","authors":"Ibrahim Karume","doi":"10.2174/0115701786330890240826053103","DOIUrl":null,"url":null,"abstract":": Herein, the influence of structural attributes, including the interactions of lipases with support systems, substrates, products/byproducts, and the media environment, on enzyme stability, selectivity and activity are discussed. Substrates/products, such as methanol, glycerol, phenolic acids and polyphenols, can inhibit lipase activity by influencing the mass flow of the reactants and products or by enzyme denaturation, which is also caused by extreme pH, high temperatures, and digestive action of most organic solvents. Immobilization techniques that involve chemical bonding between the functional groups of the support and the amino acids of the lipase maintain the enzyme’s active conformation via the formation of stable secondary structures. Functionalized metal nanoparticles and metal and covalent organic frameworks (COFs and MOFs) covalently bond to lipases, reducing the reliance of the active site conformation on hydrogen bonding and disulfide bonds. The crystallinity of COFand MOF-immobilized lipases allows them to be used in contrasting media environments and at high temperatures, which increases the reaction kinetics and improves the catalytic yield. On the other hand, inert support systems such as silica promote catalytic yields by minimizing protein leaching, which fairly maintains the amount of the preloaded lipase. The structure of substrates also plays a large role, whereas some lipases strictly prefer narrow substrates. In contrast, others, such as Candida species lipases, are liberal and allow substrates of varying bulkiness/steric hindrances.","PeriodicalId":18116,"journal":{"name":"Letters in Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701786330890240826053103","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

: Herein, the influence of structural attributes, including the interactions of lipases with support systems, substrates, products/byproducts, and the media environment, on enzyme stability, selectivity and activity are discussed. Substrates/products, such as methanol, glycerol, phenolic acids and polyphenols, can inhibit lipase activity by influencing the mass flow of the reactants and products or by enzyme denaturation, which is also caused by extreme pH, high temperatures, and digestive action of most organic solvents. Immobilization techniques that involve chemical bonding between the functional groups of the support and the amino acids of the lipase maintain the enzyme’s active conformation via the formation of stable secondary structures. Functionalized metal nanoparticles and metal and covalent organic frameworks (COFs and MOFs) covalently bond to lipases, reducing the reliance of the active site conformation on hydrogen bonding and disulfide bonds. The crystallinity of COFand MOF-immobilized lipases allows them to be used in contrasting media environments and at high temperatures, which increases the reaction kinetics and improves the catalytic yield. On the other hand, inert support systems such as silica promote catalytic yields by minimizing protein leaching, which fairly maintains the amount of the preloaded lipase. The structure of substrates also plays a large role, whereas some lipases strictly prefer narrow substrates. In contrast, others, such as Candida species lipases, are liberal and allow substrates of varying bulkiness/steric hindrances.
酶的选择性和固定化如何影响脂肪酶催化过程的催化产量
:本文讨论了结构属性对酶稳定性、选择性和活性的影响,包括脂肪酶与支持系统、底物、产物/副产物以及介质环境之间的相互作用。底物/产物(如甲醇、甘油、酚酸和多酚)可通过影响反应物和产物的质量流或酶变性来抑制脂肪酶的活性,极端 pH 值、高温和大多数有机溶剂的消化作用也会导致酶变性。固定化技术涉及支撑物的功能基团与脂肪酶氨基酸之间的化学键合,通过形成稳定的二级结构来保持酶的活性构象。功能化金属纳米颗粒以及金属和共价有机框架(COFs 和 MOFs)与脂肪酶共价结合,减少了活性位点构象对氢键和二硫键的依赖。COF 和 MOF 固定化脂肪酶的结晶性使它们可以在不同的介质环境和高温下使用,从而提高了反应动力学和催化产率。另一方面,惰性支持系统(如二氧化硅)可最大限度地减少蛋白质浸出,从而提高催化产率,这也相当程度地保持了预载脂肪酶的数量。底物的结构也起着很大的作用,有些脂肪酶严格偏好狭窄的底物。与此相反,其他脂肪酶(如念珠菌脂肪酶)则比较宽松,允许使用不同松厚度/星状阻碍的底物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Organic Chemistry
Letters in Organic Chemistry 化学-有机化学
CiteScore
1.30
自引率
12.50%
发文量
135
审稿时长
7 months
期刊介绍: Aims & Scope Letters in Organic Chemistry publishes original letters (short articles), research articles, mini-reviews and thematic issues based on mini-reviews and short articles, in all areas of organic chemistry including synthesis, bioorganic, medicinal, natural products, organometallic, supramolecular, molecular recognition and physical organic chemistry. The emphasis is to publish quality papers rapidly by taking full advantage of latest technology for both submission and review of the manuscripts. The journal is an essential reading for all organic chemists belonging to both academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信