Defu Qiu;Yuhu Cheng;Kelvin K.L. Wong;Wenjun Zhang;Zhang Yi;Xuesong Wang
{"title":"DBSR: Quadratic Conditional Diffusion Model for Blind Cardiac MRI Super-Resolution","authors":"Defu Qiu;Yuhu Cheng;Kelvin K.L. Wong;Wenjun Zhang;Zhang Yi;Xuesong Wang","doi":"10.1109/TMM.2024.3453059","DOIUrl":null,"url":null,"abstract":"Cardiac magnetic resonance imaging (CMRI) can help experts quickly diagnose cardiovascular diseases. Due to the patient's breathing and slight movement during the magnetic resonance imaging scan, the obtained CMRI may be severely blurred, affecting the accuracy of clinical diagnosis. To address this issue, we propose the quadratic conditional diffusion model for blind CMRI super-resolution (DBSR). Specifically, we propose a conditional blur kernel noise predictor, which predicts the blur kernel from low-resolution images by the diffusion model, transforming the unknown blur kernel in low-resolution CMRI into a known one. Meanwhile, we design a novel conditional CMRI noise predictor, which uses the predicted blur kernel as prior knowledge to guide the diffusion model in reconstructing high-resolution CMRI. Furthermore, we propose a cascaded residual attention network feature extractor, which extracts feature information from CMRI low-resolution images for blur kernel prediction and SR reconstruction of CMRI images. Extensive experimental results indicate that our proposed DBSR achieves better blind super-resolution reconstruction results than several state-of-the-art baselines.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"11358-11371"},"PeriodicalIF":8.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663065/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiac magnetic resonance imaging (CMRI) can help experts quickly diagnose cardiovascular diseases. Due to the patient's breathing and slight movement during the magnetic resonance imaging scan, the obtained CMRI may be severely blurred, affecting the accuracy of clinical diagnosis. To address this issue, we propose the quadratic conditional diffusion model for blind CMRI super-resolution (DBSR). Specifically, we propose a conditional blur kernel noise predictor, which predicts the blur kernel from low-resolution images by the diffusion model, transforming the unknown blur kernel in low-resolution CMRI into a known one. Meanwhile, we design a novel conditional CMRI noise predictor, which uses the predicted blur kernel as prior knowledge to guide the diffusion model in reconstructing high-resolution CMRI. Furthermore, we propose a cascaded residual attention network feature extractor, which extracts feature information from CMRI low-resolution images for blur kernel prediction and SR reconstruction of CMRI images. Extensive experimental results indicate that our proposed DBSR achieves better blind super-resolution reconstruction results than several state-of-the-art baselines.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.