Precise Wireless Charging in Complicated Environments

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Wei Yang;Chi Lin;Haipeng Dai;Jiankang Ren;Lei Wang;Guowei Wu;Qiang Zhang
{"title":"Precise Wireless Charging in Complicated Environments","authors":"Wei Yang;Chi Lin;Haipeng Dai;Jiankang Ren;Lei Wang;Guowei Wu;Qiang Zhang","doi":"10.1109/TNET.2024.3441113","DOIUrl":null,"url":null,"abstract":"Wireless Rechargeable Sensor Networks (WRSNs) have become an important research issue as they can overcome the energy bottleneck problem of wireless sensor networks. However, inaccurate discretization methods and imprecise charging models yield a huge gap between theoretical results and practical applications, making it difficult for wide adoptions. In this paper, we focus on designing a precise charging method for maximizing charging utility when line-of-sight (LOS) and none-line-of-sight (NLOS) charging cases exist in complicated environments. First, we design discretization methods for charging area and charging orientation for precisely constructing the charging model. Then, we develop a novel electromagnetic wave reflection model to describe the signal propagation model in the presence of obstacles. We formalize the mobile charging problem into a submodular function maximization problem which can be solved by a proposed algorithm with an approximation guarantee. Finally, extensive experiments and simulations demonstrate that our schemes outperform comparison algorithms by 32.5% on average in charging utility in complicated environments.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4944-4959"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10637297/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless Rechargeable Sensor Networks (WRSNs) have become an important research issue as they can overcome the energy bottleneck problem of wireless sensor networks. However, inaccurate discretization methods and imprecise charging models yield a huge gap between theoretical results and practical applications, making it difficult for wide adoptions. In this paper, we focus on designing a precise charging method for maximizing charging utility when line-of-sight (LOS) and none-line-of-sight (NLOS) charging cases exist in complicated environments. First, we design discretization methods for charging area and charging orientation for precisely constructing the charging model. Then, we develop a novel electromagnetic wave reflection model to describe the signal propagation model in the presence of obstacles. We formalize the mobile charging problem into a submodular function maximization problem which can be solved by a proposed algorithm with an approximation guarantee. Finally, extensive experiments and simulations demonstrate that our schemes outperform comparison algorithms by 32.5% on average in charging utility in complicated environments.
在复杂环境中实现精确无线充电
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信