{"title":"Observer Design and State-Feedback Stabilization for Nonlinear Systems via Equilibrium Manifold Expansion Linearization","authors":"Tianjian Hou, Jun Zhou","doi":"10.1007/s12346-024-01115-8","DOIUrl":null,"url":null,"abstract":"<p>Linearization remodeling and state-feedback control for a class of autonomous nonlinear systems based on equilibrium manifold expansion (EME) are visited and explicated in this paper, including linearization approximation, state-feedback stabilization and state estimation. More precisely, firstly, EME linearized remodels of nonlinear systems are explained and their existence is validated rigorously; secondly, EME-based state-feedback control and observer design are developed analytically with EME remodeling and gain scheduling; thirdly, stabilization under EME-based state feedback and observers are tackled, respectively; finally, feasibility and efficiency of the EME approach are illustrated by numerical simulations.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"62 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01115-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Linearization remodeling and state-feedback control for a class of autonomous nonlinear systems based on equilibrium manifold expansion (EME) are visited and explicated in this paper, including linearization approximation, state-feedback stabilization and state estimation. More precisely, firstly, EME linearized remodels of nonlinear systems are explained and their existence is validated rigorously; secondly, EME-based state-feedback control and observer design are developed analytically with EME remodeling and gain scheduling; thirdly, stabilization under EME-based state feedback and observers are tackled, respectively; finally, feasibility and efficiency of the EME approach are illustrated by numerical simulations.
期刊介绍:
Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.