A note on combinatorial type and splitting invariants of plane curves

Taketo Shirane
{"title":"A note on combinatorial type and splitting invariants of plane curves","authors":"Taketo Shirane","doi":"arxiv-2409.07915","DOIUrl":null,"url":null,"abstract":"Splitting invariants are effective for distinguishing the embedded topology\nof plane curves. In this note, we introduce a generalization of splitting\ninvariants, called the G-combinatorial type, for plane curves by using the\nmodified plumbing graph defined by Hironaka [14]. We prove that the\nG-combinatorial type is invariant under certain homeomorphisms based on the\narguments of Waldhausen [32, 33] and Neumann [22]. Furthermore, we distinguish\nthe embedded topology of quasi-triangular curves by the G-combinatorial type,\nwhich are generalization of triangular curves studied in [4].","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Splitting invariants are effective for distinguishing the embedded topology of plane curves. In this note, we introduce a generalization of splitting invariants, called the G-combinatorial type, for plane curves by using the modified plumbing graph defined by Hironaka [14]. We prove that the G-combinatorial type is invariant under certain homeomorphisms based on the arguments of Waldhausen [32, 33] and Neumann [22]. Furthermore, we distinguish the embedded topology of quasi-triangular curves by the G-combinatorial type, which are generalization of triangular curves studied in [4].
关于平面曲线的组合类型和分裂不变式的说明
分裂不变式可以有效区分平面曲线的嵌入拓扑。在本注释中,我们使用 Hironaka [14] 定义的改进垂线图,为平面曲线引入了一种广义的分裂不变式,称为 G 组合类型。我们基于 Waldhausen [32, 33] 和 Neumann [22] 的论证,证明了 G 组合类型在某些同构下是不变的。此外,我们用 G 组合类型区分了准三角形曲线的嵌入拓扑,它们是 [4] 中研究的三角形曲线的一般化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信