Achieving designed texture and flows in bulk active nematics using optimal control theory

Saptorshi Ghosh, Aparna Baskaran, Michael F. Hagan
{"title":"Achieving designed texture and flows in bulk active nematics using optimal control theory","authors":"Saptorshi Ghosh, Aparna Baskaran, Michael F. Hagan","doi":"arxiv-2408.14596","DOIUrl":null,"url":null,"abstract":"Being intrinsically nonequilibrium, active materials can potentially perform\nfunctions that would be thermodynamically forbidden in passive materials.\nHowever, active systems have diverse local attractors that correspond to\ndistinct dynamical states, many of which exhibit chaotic turbulent-like\ndynamics and thus cannot perform work or useful functions. Designing such a\nsystem to choose a specific dynamical state is a formidable challenge.\nMotivated by recent advances enabling opto-genetic control of experimental\nactive materials, we describe an optimal control theory framework that\nidentifies a spatiotemporal sequence of light-generated activity that drives an\nactive nematic system toward a prescribed dynamical steady-state. Active\nnematics are unstable to spontaneous defect proliferation and chaotic streaming\ndynamics in the absence of control. We demonstrate that optimal control theory\ncan compute activity fields that redirect the dynamics into a variety of\nalternative dynamical programs and functions. This includes dynamically\nreconfiguring between states, and selecting and stabilizing emergent behaviors\nthat do not correspond to attractors, and are hence unstable in the\nuncontrolled system. Our results provide a roadmap to leverage optical control\nmethods to rationally design structure, dynamics, and function in a wide\nvariety of active materials.","PeriodicalId":501146,"journal":{"name":"arXiv - PHYS - Soft Condensed Matter","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Being intrinsically nonequilibrium, active materials can potentially perform functions that would be thermodynamically forbidden in passive materials. However, active systems have diverse local attractors that correspond to distinct dynamical states, many of which exhibit chaotic turbulent-like dynamics and thus cannot perform work or useful functions. Designing such a system to choose a specific dynamical state is a formidable challenge. Motivated by recent advances enabling opto-genetic control of experimental active materials, we describe an optimal control theory framework that identifies a spatiotemporal sequence of light-generated activity that drives an active nematic system toward a prescribed dynamical steady-state. Active nematics are unstable to spontaneous defect proliferation and chaotic streaming dynamics in the absence of control. We demonstrate that optimal control theory can compute activity fields that redirect the dynamics into a variety of alternative dynamical programs and functions. This includes dynamically reconfiguring between states, and selecting and stabilizing emergent behaviors that do not correspond to attractors, and are hence unstable in the uncontrolled system. Our results provide a roadmap to leverage optical control methods to rationally design structure, dynamics, and function in a wide variety of active materials.
利用最优控制理论实现散装主动线束中的设计纹理和流动
活性材料本质上是非平衡的,因此有可能执行被动材料热力学上禁止执行的功能。然而,活性系统具有多种局部吸引子,这些吸引子与不同的动力学状态相对应,其中许多吸引子表现出混乱的湍流动力学,因此无法执行工作或有用的功能。设计这样的系统以选择特定的动力学状态是一项艰巨的挑战。受近期实验活性材料光遗传控制进展的激励,我们描述了一个最优控制理论框架,该框架确定了光产生活性的时空序列,该序列可推动活性向列系统趋向规定的动力学稳态。在缺乏控制的情况下,活性线粒体对自发的缺陷增殖和混乱的流动力学具有不稳定性。我们证明,最优控制理论可以计算活动场,将动力学重定向为各种替代动力学程序和函数。这包括在不同状态之间进行动态重新配置,以及选择和稳定与吸引子不对应、因而在无控制系统中不稳定的新兴行为。我们的研究成果为利用光学控制方法合理设计各种活性材料的结构、动力学和功能提供了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信