Quasiorders for a Characterization of Iso-dense Spaces

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tom Richmond, Eliza Wajch
{"title":"Quasiorders for a Characterization of Iso-dense Spaces","authors":"Tom Richmond, Eliza Wajch","doi":"10.1007/s40840-024-01758-5","DOIUrl":null,"url":null,"abstract":"<p>A (generalized) topological space is called an iso-dense space if the set of all its isolated points is dense in the space. The main aim of the article is to show in <span>\\(\\textbf{ZF}\\)</span> a new characterization of iso-dense spaces in terms of special quasiorders. For a non-empty family <span>\\(\\mathcal {A}\\)</span> of subsets of a set <i>X</i>, a quasiorder <span>\\({{\\,\\mathrm{\\lesssim }\\,}}_{\\mathcal {A}}\\)</span> on <i>X</i> determined by <span>\\(\\mathcal {A}\\)</span> is defined. Necessary and sufficient conditions for <span>\\(\\mathcal {A}\\)</span> are given to have the property that the topology consisting of all <span>\\({{\\,\\mathrm{\\lesssim }\\,}}_{\\mathcal {A}}\\)</span>-increasing sets coincides with the generalized topology on <i>X</i> consisting of the empty set and all supersets of non-empty members of <span>\\(\\mathcal {A}\\)</span>. The results obtained, applied to the quasiorder <span>\\({{\\,\\mathrm{\\lesssim }\\,}}_{\\mathcal {D}}\\)</span> determined by the family <span>\\(\\mathcal {D}\\)</span> of all dense sets of a given (generalized) topological space, lead to a new characterization of non-trivial iso-dense spaces. Independence results concerning resolvable spaces are also obtained.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01758-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A (generalized) topological space is called an iso-dense space if the set of all its isolated points is dense in the space. The main aim of the article is to show in \(\textbf{ZF}\) a new characterization of iso-dense spaces in terms of special quasiorders. For a non-empty family \(\mathcal {A}\) of subsets of a set X, a quasiorder \({{\,\mathrm{\lesssim }\,}}_{\mathcal {A}}\) on X determined by \(\mathcal {A}\) is defined. Necessary and sufficient conditions for \(\mathcal {A}\) are given to have the property that the topology consisting of all \({{\,\mathrm{\lesssim }\,}}_{\mathcal {A}}\)-increasing sets coincides with the generalized topology on X consisting of the empty set and all supersets of non-empty members of \(\mathcal {A}\). The results obtained, applied to the quasiorder \({{\,\mathrm{\lesssim }\,}}_{\mathcal {D}}\) determined by the family \(\mathcal {D}\) of all dense sets of a given (generalized) topological space, lead to a new characterization of non-trivial iso-dense spaces. Independence results concerning resolvable spaces are also obtained.

Abstract Image

等密度空间特征的准边界
如果一个(广义)拓扑空间的所有孤立点集在空间中都是致密的,那么这个空间就被称为等密空间。文章的主要目的是在(\textbf{ZF}\)中展示等密空间在特殊准序方面的新特征。对于集合 X 的子集的非空族 \(\mathcal{A}\),定义了由 \(\mathcal{A}\)决定的 X 上的准序 \({{\,\mathrm{lesssim }\,}}_{\mathcal{A}}\)。给出了\(\mathcal {A}\)的必要条件和充分条件,即由所有\({{\mathrm\lesssim\,}}_{\mathcal {A}}\)递增集组成的拓扑与由\(\mathcal {A}\)的空集和非空成员的所有超集组成的X上的广义拓扑重合。所得到的结果应用于由给定(广义)拓扑空间的所有密集集的族(\\mathcal {D})决定的准阶({\,\mathrm{lesssim }\,}}_{\mathcal {D}}),导致了非三维等密空间的新特征。同时还得到了关于可解析空间的独立结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信